
The Theory of Boolean
Counterfactual Reasoning

Kilian Rückschloß

München 2024

The Theory of Boolean
Counterfactual Reasoning

Kilian Rückschloß

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universiät München

eingereicht von
Kilian Rückschloß
am 04.06.2024

Erstgutachter: Prof. Dr. François Bry

Zweitgutachter: Prof. Dr. Fabrizio Riguzzi

Tag der mündlichen Prüfung: 15.07.2024

Versicherung an Eides statt

(gemäß § 8 Abs. 2 Nr. 5 der Promotionsordnung vom 12. Juli 2011)

Hiermit erkläre ich, Kilian Rückschloß, an Eides statt, dass die Dissertation mit dem Titel
”
The

Theory of Boolean Counterfactual Reasoning“ von mir selbstständig und ohne unerlaubte Beihilfe
angefertigt wurde.

München, den 19.07.2024
Ort, Datum

Unterzeichner

Zusammenfassung

Ursache und Wirkung bilden eine Grundlage dafür, wie Menschen ihre Umwelt wahrnehmen.
Wir erklären unsere Umwelt, indem wir Beobachtungen als Wirkung anderer, selbsterklärender
Beobachtungen beschreiben. Angenommen, ein Haus brennt nach einem Blitzschlag. In diesem
Fall können wir den Blitz als selbsterklärendes Ereignis betrachten, welches das Feuer in dem
Haus verursacht. Künstliche Intelligenz hingegen basiert derzeit größtenteils auf dem Konzept
der Korrelation. Dies bedeutet, dass sie ausdrücken kann, wie die Beobachtung eines Feuers die
Wahrscheinlichkeit für einen Blitzschlag erhöht und umgekehrt. Eine auf Korrelation basierende
künstliche Intelligenz kann jedoch den Blitz nicht als Ursache des Feuers erkennen. Während
korrelationsbasierte künstliche Intelligenz nur Fragen zur Wahrheit oder Wahrscheinlichkeit von
Aussagen beantworten kann, ermöglichen kausale Erklärungen die Beantwortung zweier weiterer
Fragetypen: Fragen zu den Folgen externer Interventionen und kontrafaktische Fragen, also Fragen
der Form:

”
Was wäre, wenn...?“. Man kann beispielsweise intervenieren und einen Blitzableiter

installieren, um Brände zu verhindern, die durch Blitzschläge verursacht werden. Beobachten
wir einen Blitzschlag, der ein Feuer in einem Haus ohne Blitzableiter verursacht, folgt aus dieser
kausalen Erklärung, dass kein Feuer ausgebrochen wäre, hätte man einen Blitzableiter installiert.

Menschen beschreiben ihre Umwelt nicht nur in Form kausaler Ursache-Wirkungs-Beziehungen.
Oft sind wir auch mit unsicherem Wissen oder mit Beziehungen zwischen Individuen konfrontiert.
Wenn wir beispielsweise eine Gruppe von Menschen betrachten, können zwei Individuen innerhalb
dieser Gruppe Freunde sein, d.h., sie stehen in Beziehung zueinander. Darüber hinaus kann man
annehmen, dass Freunde von Rauchern mit erhöhter Wahrscheinlichkeit ebenfalls rauchen. Wir
sind uns also unsicher, ob Freunde von Rauchern zwangsläufig selbst rauchen. Schließlich nehmen
wir an, dass die Wahrscheinlichkeit, Raucher zu sein, für alle Personen mit derselben Anzahl von
rauchenden Freunden übereinstimmt. Die Annahme, dass Individuen mit denselben Eigenschaften
sich gleich verhalten, kann Berechnungen vereinfachen oder den Raum möglicher Beschreibungen
eines Datensatzes verkleinern. Das Feld der statistischen relationalen künstlichen Intelligenz kom-
biniert die prädikatenlogische Repräsentation von Beziehungen innerhalb eines Bereichs mit der
Repräsentation von Unsicherheit durch Wahrscheinlichkeiten. Hierbei dient Prädikatenlogik als
Sprache, um die Austauschbarkeit von Individuen in einem Modell oder Datensatz auszudrücken.
Dieser Ansatz führte unter anderem zu Markov-Logik-Netzwerken und probabilistischer Logikpro-
grammierung.

Diese Monographie beginnt mit einem Überblick über die zuvor genannten Formalismen und
führt in Pearls Kausalitätstheorie ein. Statt jeden Formalismus einzeln um kausales Schließen
zu erweitern, betrachtet diese Arbeit einen axiomatischen Ansatz. Sie erweitert Bochmans The-
orie der kausalen Logik zu einer Axiomatisierung des deterministischen kausalen Schließens im
Boolschen Fall. Diese Axiomatisierung führt dann zur abduktiven Logikprogrammierung als
Sprache für kausales Wissen. Anschließend werden abduktive Logikprogramme mit Markov-Logik-
Netzwerken zu gewichteten abduktiven Logikprogrammen kombiniert. Auf diese Weise erhält
man einen allgemeinen Formalismus für kausales Schließen mit unsicherem Wissen. Die Arbeit
spezifiziert die kausalen Fragentypen, d.h. Fragen zu den Folgen externer Interventionen und
kontrafaktische Fragen, im Kontext der gewichteten abduktiven Logikprogrammierung. Durch
Einbettung verschiedener Formalismen aus dem Feld der statistisch relationalen künstlichen In-
telligenz wird das gegebene kausale Schließen übertragen und konsistentes kausales Schließen über
verschiedene Formalismen hinweg garantiert. Weiter wird kontrafaktisches Schließen in azyklis-
chen ProbLog-Programmen untersucht. Ein Resultat gibt Regularitätsbedingungen, unter denen
azyklische ProbLog-Programme aus ihrer kontrafaktischen Ausgabe rekonstruiert werden können.
ProbLog scheint daher als Sprache für kontrafaktisches Schließen besonders geeignet zu sein. Die
Lerntheorie von ProbLog-Programmen basiert jedoch auf statistischen Tests, die keine Informa-
tionen über den der Daten zugrunde liegenden kausalen Mechanismus liefern. Somit ist es un-
zulässig, die resultierenden Programme für kontrafaktisches Schließen zu verwenden. Im letzten
Teil wird ein Fragment beschrieben, in welchem sich ProbLog-Programme aus ihrer Verteilung
rekonstruieren lassen. Weiter wird argumentiert, dass dieses Fragment einen Ansatz liefert, um
ProbLog-Programme für kontrafaktisches Schließen aus Daten zu lernen.

Abstract

Human reasoning is heavily based on distinguishing causes from their effects. We typically un-
derstand our environment by explaining observations, i.e., effects, with the help of self-evident a
priori knowledge, i.e., causes. Assume, for instance, that a lightning strike hits a house and the
house burns down. In this case, we consider the lightning as self-evident, a priori knowledge, which
explains the fire in the house. This leads us to the judgment: “The lightning caused the fire in
the house”.

Unfortunately, nowadays artificial intelligence is mostly built on the concept of correlation. In
our example, this means we can express that observing a fire increases the probability of a lightning
strike hitting our house, and vice versa. However, a correlation-based artificial intelligence cannot
recognize the lightning as the fire’s cause. While correlation-based artificial intelligence only
supports queries about the truth or probabilities of statements, causal explanations allow two
additional query types: queries for the effects of external interventions and counterfactual queries,
i.e., queries of the form: “What if...?”. In our scenario, we can, for instance, intervene and install
a conductor to prevent fires being caused, i.e. explained by lightning strikes. Furthermore, if we
observe a lightning strike hitting our house followed by a fire breaking out, we may conclude
from a causal explanation that the fire would not have occurred had we installed a lightning rod
beforehand.

Humans reason not only on causes, but also on uncertainties, represented by probabilities, and
on relations between components or individuals of a given domain formalized in logic, preferably
first-order logic. When, for example, given a group of people, two individuals within this group
may be friends, i.e., they share a relationship. Moreover, one may assume that friends of smokers
are more likely to be themselves smokers, meaning that we are uncertain about the implication
whether friends of smokers necessarily smoke. Finally, we may assume that all individuals with
the same number of smoking friends are equally likely to smoke themselves. The assumption
that individuals with the same properties behave in the same way may speed up calculations or
shrink the space of possible descriptions for a dataset. The field of statistical relational artificial
intelligence combines first-order logic reasoning on relations in a domain and probabilistic reasoning
on uncertainty, whereby first-order logic serves as a language for expressing the interchangeability
of individuals in a probabilistic model or dataset. Among other things, this approach has so far
resulted in Markov logic networks and probabilistic logic programs.

The work reported in this monograph first provides a brief overview of the aforementioned for-
malisms and introduces Pearl’s causal reasoning. Instead of continuously expanding every distinct
formalism with causal reasoning, the thesis proposes an axiomatic approach to Boolean causal
reasoning under uncertainty. Initially, we extend Bochman’s logical theory of causality to ob-
tain a complete axiomatization of deterministic Boolean causal reasoning, leading to abductive
logic programming. We then generalize abductive logic programming to the framework of Markov
logic networks, which employs a maximum entropy approach extending first-order logic to handle
uncertainty. In this way, we obtain weighted abductive logic programming as a general frame-
work tailored to Boolean causal reasoning under uncertainty. We specify the causal query types,
i.e., queries for the effects of external interventions and counterfactual queries, within the context
of weighted abductive logic programming. By embedding a formalism into our framework and
subsequently transferring the causal reasoning there, we derive causal reasoning in widespread
formalisms of statistical relational artificial intelligence. In particular, our approach guarantees
consistent causal reasoning across these frameworks. Next, we focus on counterfactual reasoning
in acyclic ProbLog programs, where the proposed approach is implemented in Kiesel’s WhatIf
solver. We show that sufficiently well-behaved ProbLog programs can be reconstructed from their
counterfactual output. Hence, ProbLog is a particularly suitable framework to address counter-
factual reasoning. However, learning ProbLog programs from data is usually based on statistical
tests, lacking information about the underlying causal mechanism. This makes it infeasible to
use the resulting programs for counterfactual reasoning. To address this issue in the last part, we
propose a fragment of ProbLog that allows reconstructing a program from its induced distribution,
finally enabling us to learn programs supporting counterfactual queries.

Acknowledgements

First, I am grateful to Dr. Felix Weitkämper for his invaluable advice, continuous support, fruit-
ful discussions, and patience during my doctoral studies. I am also grateful to my supervisor,
Prof. Dr. François Bry. His knowledge and extensive experience have encouraged me through-
out my academic research and daily life. I thank Prof. Dr. Fabrizio Riguzzi for pointing out a
mistake in the introduction of the P-log semantics, which helped me to correct the semantics of
weighted abductive causal theories and weighted abductive logic programs later on. I also thank
Prof. Dr. Jasmin Blanchette for his valuable comments on my thesis. I would like to thank all
my colleagues. Their support and good company have made my doctoral journey a wonderful
experience.

I thank Louisa Sigl for helping me with the application for my current position and Kailin
Sun for frequently helping me with my English. I thank Prof. Dr. Oliver Deiser for his Analysis
lectures in 2011 and 2012. It was his style of explaining mathematics that brought me into this
field of research.

I express my deepest gratitude to my parents, Martina Rückschloß-Stadler and Bernhard
Rückschloß. Without their understanding and encouragement over the past years, it would have
been impossible for me to complete my studies. I am also extremely grateful to my partner,
Anna Fleckenstein, for her understanding and support throughout this challenging but rewarding
journey, and for the enjoyable moments we shared.

Last but not least, I thank God, the Father, the Son, and the Holy Spirit for creating me and
for the energy, health, and inspiration that enabled this work.

Contents

1 Introduction 1
1.1 Counterfactual Reasoning in Pearl’s Causal Models 1
1.2 Counterfactual Reasoning in ProbLog . 4
1.3 Bochman’s Logical Theory of Causality . 8
1.4 Causal Reasoning in Presence of Cyclic Causal Relationships 11
1.5 ProbLog programs and Counterfactual Reasoning 12

2 Preliminaries 13
2.1 Knowledge and Counterfactuals . 13
2.2 Statistical Relational Artificial Intelligence . 15

2.2.1 Probability Theory . 15
2.2.2 Propositional Logic and LogLinear Models 17
2.2.3 Relational First-Order Logic and Markov Logic Networks 22
2.2.4 Logic Programs and Probabilistic Logic Programs 28

2.3 Formalizing Causality, Knowledge, and Counterfactuals 48
2.3.1 Pearl’s Functional Causal Models . 48
2.3.2 Causal Queries for Logic Programs with Annotated Disjunctions 55
2.3.3 Bochman’s Logical Theory of Causality . 56

3 Boolean Causal Reasoning under Uncertainty 67
3.1 Deterministic Causal Reasoning . 68
3.2 Weighted Causal Reasoning . 78
3.3 Counterfactual Reasoning . 86
3.4 The Causal Interpretation of Statistical Relational Artificial Intelligence 90

3.4.1 A Causal Interpretation of Markov Logic Networks 92
3.4.2 A Causal Interpretation of LPMLN Programs 92
3.4.3 A Causal Interpretation of ProbLog Programs 93
3.4.4 A Causal Interpretation of Logic Programs with Annotated Disjunctions . . 99

3.5 First Result: A Unifying Framework for Causal Knowledge 100

4 Extracting Causal Knowledge from Counterfactuals 101
4.1 Knowledge Underdetermined by Counterfactual Reasoning 103
4.2 Knowledge Uniquely Determined by Counterfactual Reasoning 105
4.3 Second Result: Equivalence of Knowledge and Counterfactual Reasoning 115

5 Data-Based Counterfactual Reasoning 117
5.1 Counterfactual Reasoning and Program Induction 118
5.2 An Assumption for Deriving Causal Knowledge from Observations 119
5.3 Third Result: A Language Bias for Data-Based Counterfactual Reasoning 121

6 Perspectives for Further Research and Conclusion 123

CONTENTS

Chapter 1

Introduction

Humans possess the remarkable skill of reasoning in terms of counterfactuals, allowing them to
answer questions of the form: “What if...?”. This ability proves particularly relevant in fields such
as medicine, where we may inquire: “What if a patient in the control group of a pharmaceutical
study had received treatment? Would he have recovered?”. In decision-making, we might ask:
“What if I had taken another flight? Would I still have lost my luggage?”. Counterfactual reason-
ing plays a crucial role in defining the notions of responsibility and blame, as discussed in Halpern’s
work (30). For example, when considering a driver’s responsibility for an accident, we may ques-
tion: “What if the driver had not sped up? Would the accident still have occurred?”. Overall,
counterfactuals enable us to make sense of the past, plan future courses of action, make emotional
and social judgments, and adapt our behavior (31). Consequently, an artificial intelligence should
also be able to reason counterfactually.

Generally, counterfactual reasoning means contemplating how events would have unfolded
under different circumstances without actually experiencing these different realities. For example,
when we make judgments such as: “I would not have lost my luggage if I had booked a direct
flight.” we do not experience the reality in which we take a direct flight. Thus, these judgments
reflect our ability to rationally derive alternative outcomes based on different choices or actions.

Following Lewis (37), we identify a counterfactual query like: “What if I had taken another
flight? Would I still have lost my luggage?” with a triplet consisting of an observation e (we lost
our luggage on the current flight), a constraint i (we would take another flight) and a query ϕ
(asking if we still lose our luggage assuming the constraint i is true). We then aim to answer the
query ϕ in an alternative world ωa that satisfies the constraint i, i.e., where we take another flight,
while minimally deviating from the real world ωr, where we observe the evidence e that we lose
our luggage on the current flight.

Although Lewis (37) appropriately formalizes the concepts underlying counterfactual reasoning,
he does not provide a construction for the alternative worlds ωa. We adapt the idea of Pearl (41)
and construct an alternative world by manipulating the causal explanation for the real world ωr.
If we explain the loss of our luggage with a strike at the airport of departure, we are likely to
judge that we would also have lost it on another flight. Conversely, if we explain it with a too
short transfer time, we may judge that we would not have lost it had we taken another connection.
This thesis investigates Pearl’s approach to counterfactual reasoning in the Boolean case, where
all relevant variables take on two values, represented by true and false.

1.1 Counterfactual Reasoning in Pearl’s Causal Models

Pearl (41) suggests modeling causal mechanisms with deterministic functional relationships. In his
causal models, he first distinguishes between explained internal variables V and unexplained
external variables U. The internal variables V ∈ V are then explained, i.e., defined by func-

2 1. Introduction

tions fV (U,V) in the internal variables V and the external variables U, such that the system of
equations V := fV (V,U), V ∈ V has a unique solution for all values of the external variables U.

Example 1.1.1. Consider a road that passes through a field with a sprinkler in it. Denote by
cloudy the event that the weather is cloudy. The sprinkler is turned on by a weather sensor if
the weather is sunny, that is, if cloudy is false. Suppose further that it rains, denoted by rain,
whenever it is cloudy, and that the road is wet, denoted by wet, if either it rains or the sprinkler
is turned on.

According to Pearl (41), this causal mechanism is represented by the causal model M that
consists of the internal variablesV := {rain, sprinkler, wet}, the external variablesU := {cloudy},
and the system of equations:

sprinkler := ¬cloudy rain := cloudy wet := rain ∨ sprinkler

Given truth values for external variables, that is, cloudy = True or cloudy = False, we obtain
the solutions:

cloudy = True, rain = True, sprinkler = False, wet = True

cloudy = False, rain = False, sprinkler = True, wet = True

This provides us with the knowledge represented by the solutions, along with the explanation
that cloudy = True or cloudy = False.

Pearl (41) further observes that his causal models are able to represent external interventions.
An external intervention forcing an internal variable V ∈ V to attain the value v is represented
by replacing the equation V := fV (U,V) in M with V := v resulting in the modified causal
model or the submodelMV :=v.

Example 1.1.2. Assume that we manually switch the sprinkler on (or off) in the situation of
Example 1.1.1. According to Pearl (41), this modification results in the modified causal model or
submodel Msprinkler:=True (Msprinkler:=False) obtained by replacing the equation for sprinkler
with sprinkler := True (False). Hence, we obtain the modified causal model Msprinkler:=True

(Msprinkler:=False) that consists of the internal variables V := {rain, sprinkler, wet}, the external
variables U := {cloudy}, and the system of equations:

sprinkler := True (False)

rain := cloudy

wet := rain ∨ sprinkler

If we observe the sprinkler to be off in the causal model M of Example 1.1.1, we can draw
the conclusion that the weather is cloudy and it rains. However, if we intervene and turn the
sprinkler off manually, we cannot draw such a conclusion in the modified modelMsprinkler:=False.
Consequently, intervening and switching off the sprinkler is indeed different from observing that
the sprinkler is off.

As external interventions often arise from actions, i.e., doing something, such as switching
the sprinkler off in Example 1.1.2, Pearl (41) introduces the do-operator do() to refer to the
corresponding modified causal models, i.e., he defines

Msprinkler:=True :=Mdo(sprinkler:=True) (Msprinkler:=False :=Mdo(sprinkler:=False)).

Finally, Pearl (41) argues that an intervention constitutes a minimal change such that a certain
constraint becomes true. This viewpoint then allows Balke and Pearl (5) to construct Lewis’
alternative worlds (37) to answer counterfactual queries.

1.1 Counterfactual Reasoning in Pearl’s Causal Models 3

Example 1.1.3. Recall the scenario of Example 1.1.1 and assume that we observe the sprinkler
on and the road wet. What if the sprinkler was turned off? Would the road also have been wet?

To answer this counterfactual query, Balke and Pearl (5) create two copies of the equation
system in Example 1.1.1 – one with superscript a to represent the alternative and one with
superscript r to represent the real world so that both copies mention the same external variables.
This results in the following twin modelMT :

sprinklera := ¬cloudy raina := cloudy weta := raina ∨ sprinklera

sprinklerr := ¬cloudy rainr := cloudy wetr := rainr ∨ sprinklerr

To satisfy the constraint on the alternative world, they intervene according to sprinklera := False
to obtain the modified twin modelMT

sprinklera:=False:

sprinklera := False raina := cloudy weta := raina ∨ sprinklera

sprinklerr := ¬cloudy rainr := cloudy wetr := rainr ∨ sprinklerr

Since we observe the sprinkler to be on, indicating sprinklerr = True, we infer that the weather
is sunny, i.e., cloudy = False. Hence, we can solve the equations and obtain weta = False. Thus,
we conclude that the road would not have been wet if the sprinkler had been turned off.

Unfortunately, in many cases, it is not possible to answer deterministic counterfactual queries.

Example 1.1.4. Assume that the sprinkler in Example 1.1.1 may also be turned on due to
sensor failure, denoted failure. In this case, we obtain the causal model that consists of the
internal variables V := {rain, sprinkler, wet}, the external variable U := {cloudy, failure}, and
the system of equations:

sprinkler := ¬cloudy ∨ failure rain := cloudy wet := rain ∨ sprinkler

If we now ask whether the road would be wet if the sprinkler was off, we proceed as in Exam-
ple 1.1.3, and obtain the following system of equations:

sprinklera := False raina := cloudy weta := raina ∨ sprinklera

sprinklerr := ¬cloudy ∨ failure rainr := cloudy wetr := rainr ∨ sprinklerr

If we now explain our observation sprinklerr = True with cloudy = False, we again obtain that
weta = False. Whereas, if we explain sprinklerr = True with failure = True, we could also
find weta = True. Therefore, in this case, it is not possible to answer the counterfactual query in
Example 1.1.3.

To avoid counterfactual queries as in Example 1.1.4, this thesis studies probabilistic causal
models. Formally, a probabilistic causal model consists of a causal model and a joint distribu-
tion on the external variables.

Example 1.1.5. Let us refine the situation of Example 1.1.1. Assume that the weather is cloudy
with probability π1 := 0.5, and that clouds cause rain with probability π2 := 0.6. Furthermore,
assume that the sensor turns on the sprinkler with probability π3 := 0.1 if it is cloudy and with
probability π4 := 0.7 if it is sunny. Finally, assume that rain causes the road to be wet with
probability π5 := 0.8, and the sprinkler causes the road to be wet with probability π6 := 0.3.

We assume that uncertainty in this scenario arises from hidden variables not explicitly modeled.
However, their influence is encapsulated in external variables U := {u1, ..., u6}. For example, the
variable u3 represents the possible causes for the sprinkler to be on if it is cloudy. These potential
causes, such as sensor failure or children playing and manually switching on the sprinkler, are
not explicitly modeled. However, we represent the potential influence of these missing parameters
with the external variable u3 and a joint probability distribution π on U.

We assume that the external variables u1, ..., u6 are mutually independent Boolean random
variables, with π(ui) := πi. The causal relationships are then modeled with the probabilistic causal

4 1. Introduction

model M, consisting of the internal variables V := {cloudy, rain, sprinkler, wet}, the external
variables U := {u1, ..., u6}, the distribution π on U, and the system of equations:

cloudy := u1

rain := cloudy ∧ u2
sprinkler := (cloudy ∧ u3) ∨ (¬cloudy ∧ u4)
wet := (rain ∧ u5) ∨ (sprinkler ∧ u6)

These equations yield a unique solution for each assignment of true values to the external
variables U := {u1, ..., u6}. Thus, the distribution π on U extends to a distribution on U ∪V.
Specifically, rain occurs with probability π(rain) := 0.5× 0.6 = 0.3.

Now, suppose we observe that the road is wet and the sprinkler is on. We want to find
the probability π(wet|sprinkler, wet,do(¬sprinkler)) that the road would have been wet if the
sprinkler had been off. To answer this counterfactual query, we proceed as in Example 1.1.3 and
obtain the following description for the real and alternative worlds, respectively:

cloudya := u1

raina := cloudya ∧ u2
sprinklera := False

weta := (raina ∧ u5) ∨ (sprinklera ∧ u6)

cloudyr := u1

rainr := cloudyr ∧ u2
sprinklerr := (cloudyr ∧ u3) ∨ (¬cloudyr ∧ u4)
wetr := (rainr ∧ u5) ∨ (sprinklerr ∧ u6).

Using the resulting probabilistic causal model, that is the modified twin modelMT
sprinklera:=False,

we determine that the road would have been wet if the sprinkler had been off with probability

π(wet|sprinkler, wet,do(¬sprinkler)) := π(weta|sprinklerr, wetr) = 0.18.

In particular, we use our observation in the real world to learn about the world outside our
model, represented by the external variables u1, ..., u6 – this is represented by conditioning on
the event {sprinklerr, wetr}. Assuming that the real and the alternative world intersect in all
influences not explicitly mentioned in our model, we use updated beliefs, i.e. the conditional
probabilities of the external variables u1, .., u6 to answer the query.

π(wet|sprinkler, wet,do(¬sprinkler)) := π(weta|sprinklerr, wetr) =
= π(raina ∧ u5|sprinklerr, wetr) = π(cloudya ∧ u2 ∧ u5|sprinklerr, wetr) =
= π(u1 ∧ u2 ∧ u5|sprinklerr, wetr) = 0.18.

For assignments of values q, e, and i to internal variables of a probabilistic causal model M,
the probability π(q|e,do(i)) indicates our confidence level regarding the counterfactual inquiry
that q would have occurred, if i had taken place before observing the evidence e. Hence, we
term π(q|e,do(i)) a counterfactual probability. This notation, introduced by Papantonis and
Belle (40), emphasizes that counterfactual probabilities involve the combination of conditional
probabilities and Pearl’s interventions, represented by the do-operator do().

1.2 Counterfactual Reasoning in ProbLog

We rely on propositional logic programming to specify causal reasoning for two reasons: The
formalism is intuitive and provides a convenient run-time system for computation. Representing

1.2 Counterfactual Reasoning in ProbLog 5

our variables with propositions in a propositional alphabet P, a logic program P consists of
clauses of the form

p← b1 ∧ . . . ∧ bn
for a proposition p and literals b1, . . . , bn, where bi ∈ {pi,¬pi} for a proposition pi ∈ P.

Example 1.2.1. Recall the situation in Example 1.1.1, i.e. we consider a road that passes through
a field with a sprinkler on it. We denote by cloudy that the weather is cloudy. A weather sensor
turns on the sprinkler if the weather is sunny, i.e., if ¬cloudy holds true. In addition, it rains,
denoted by rain, whenever it is cloudy and the road is wet, denoted by wet, if either it rains or
the sprinkler is switched on.

Here, we represent these causal relationships using the following logic program P in the alpha-
bet P := {cloudy, sprinkler, rain, wet}.

sprinkler ← ¬cloudy
rain← cloudy

wet← rain

wet← sprinkler

In a logic program P, we consider a proposition p ∈ P true if the program P forces p to hold.
Otherwise, we apply the concept of default negation, stating that the proposition p should be
false if it cannot be enforced by the program P. In particular, a negative literal ¬p is true if there
is no reason for the proposition p to hold. If there are no cyclic causal relationships at play, this
behavior is described by assigning to a logic program P its supported models, i.e., the models ω
of the Clark completion (25):

comp(P) :=

p↔ ∨
p←b1∧...∧bn∈P

b1 ∧ ... ∧ bn

p∈P

Here, a model of the Clark completion ω is a truth value assignment on the propositions P that
satisfies each formula in comp(P). We identify such a truth assignment ω with the set of all
propositions ω ⊆ P that are set to true.

Informally, the Clark completion asserts that every proposition p satisfied in a supported
model ω of a logic program P must be enforced or supported by at least one clause in P.

Example 1.2.2. The Clark completion (25) comp(P) of the program P in Example 1.2.1 is given
by the following propositional formulas:

cloudy ↔ ⊥ (1.1)

sprinkler ↔ ¬cloudy rain↔ cloudy wet↔ rain ∨ sprinkler (1.2)

Hence, we obtain a unique supported model ω := {sprinkler, wet}, that is, the sprinkler is on and
the road is wet, while the weather is sunny and it does not rain. In particular, we observe that
the formulas in Line (1.2) mean the same as the system of equations in Example 1.1.1:

sprinkler := ¬cloudy
rain := cloudy

wet := rain ∨ sprinkler

From Example 1.2.2, we conclude that we still need to find a representation for the external
variables of a causal model in logic programming. Hence, we additionally specify a subset of
propositions A ⊆ P, the so-called abducibles. An abductive logic program P is then a
pair P := (P,A) consisting of a logic program P and a set of abducibles A ⊆ P such that P
contains no clause p← b1 ∧ ... ∧ bn with p ∈ A (22).

6 1. Introduction

Example 1.2.3. We represent the causal model of Example 1.1.1 that consists of the internal
variables V := {rain, sprinkler, wet}, the external variables U := {cloudy} and the system of
equations

sprinkler := ¬cloudy rain := cloudy wet := rain ∨ sprinkler

by the abductive logic program P := (P,A), where P is the logic program of Example 1.2.1 and
the abducibles are given by A := U = {cloudy}.

As in causal models, the objective of abductive logic programs is to provide an explanation for
a given set of observations. A (supported) model ω of an abductive logic program P := (P,A)
with explanation ϵ ⊆ A is a (supported) model of the logic program P∪(ω∩A) such that ϵ := ω∩A.

Example 1.2.4. In the case of the abductive logic program P := (P,A) in Example 1.2.3, we
obtain the models ω1 := {sprinkler, wet} with explanation ϵ1 = ∅ and ω2 := {cloudy, rain,wet}
with explanation ϵ2 := {cloudy}. Finally, we note that ω1 and ω2 correspond to the solutions

cloudy = True rain = True sprinkler = False wet = True

cloudy = False rain = False sprinkler = True wet = True.

of the causal model in Example 1.2.3.

As Example 1.2.4 illustrates, abductive logic programs are a language for Boolean causal
models as long as no cyclic causal relationships are at play. In particular, we can use abductive
logic programs to predict the effect of external interventions. Like Vennekens et al. (60) and
Riguzzi et al. (48) proposed earlier in probabilistic logic programming, this can be achieved by
removing all clauses defining a proposition intervened on and by adding a fact for all propositions
that are enforced to be true.

Example 1.2.5. Recall the situation described by the abductive logic program P := (P,A)
in Example 1.2.4. If we manually turn the sprinkler on, this results in the modified abductive
logic program Psprinkler := (Psprinkler,A) obtained by exchanging the logic program P with the
following program Psprinkler.

sprinkler rain← cloudy wet← rain wet← sprinkler

If we decide to switch the sprinkler manually off, this results in the modified abductive logic
program P¬sprinkler := (P¬sprinkler,A) obtained by exchanging the logic program P with the
following program P¬sprinkler.

sprinkler rain← cloudy wet← rain wet← sprinkler

Following Pearl (41), we argue that an intervention constitutes a minimal change such that
a certain constraint becomes true. This point of view then allows us to apply the twin network
method of Balke and Pearl (5) for counterfactual reasoning in abductive logic programming.

Example 1.2.6. Recall the situation of the abductive logic program P := (P,A) in Example 1.2.3.
Once more, assume that we observe the sprinkler to be on and the road to be wet. What if the
sprinkler was turned off? Would the road also have been wet?

To answer this counterfactual query, we build the twin program PT := (PT ,A) and create

two copies Pa/r of the logic program P such that both copies mention the same abducibles, i.e.
cloudya = cloudy = cloudyr, resulting in the following program PT .

sprinklera ← ¬cloudy raina ← cloudy weta ← raina weta ← sprinklera

sprinklerr ← cloudy rainr ← cloudy wetr ← rainr wetr ← sprinklerr

1.2 Counterfactual Reasoning in ProbLog 7

Again, the superscript a refers to the alternative and the superscript r refers to the real world.
To satisfy the constraint on the alternative world, we intervene according to ¬sprinklera.

raina ← cloudy weta ← raina weta ← sprinklera

sprinklerr ← ¬cloudy rainr ← cloudy wetr ← rainr wetr ← sprinklerr

Recall that we observe the sprinkler to be on, i.e, sprinklerr, which is only possible if the weather
is sunny, i.e., ¬cloudy holds. Therefore, the only supported model of the modified twin program
PT¬sprinklera := (PT

¬sprinklera ,A) that is consistent with our observation is given by

ω := {sprinklerr, wetr}.

In particular, the alternative world is given by

ωa := ω ∩Pa = ∅.

As in Example 1.1.3, we find that the road would not have been wet had the sprinkler been off.

Extending abductive logic programs with a distribution that interprets abducibles as mutually
independent Boolean random variables leads to the ProbLog language (21; 26).

Example 1.2.7. Recall the situation of Example 1.1.5, where the weather is cloudy with proba-
bility π1 := 0.5 and clouds cause rain with probability π2 := 0.6. A sensor turns on the sprinkler
with probability π3 := 0.1 if it is cloudy and with probability π4 := 0.7 if it is sunny. Finally, rain
causes the road to be wet with probability π5 := 0.8, and the sprinkler causes the road to be wet
with probability π6 := 0.3.

Again, we model the uncertainty by introducing mutually independent random variables u1, ..., u6
and distributing them according to π(ui) := πi. This results in the following ProbLog program P.

0.5 :: u1 0.6 :: u2 0.1 :: u3 0.7 :: u4 0.8 :: u5 0.3 :: u6

cloudy ← u1

rain← cloudy ∧ u2
sprinkler ← cloudy ∧ u3
sprinkler ← ¬cloudy ∧ u4
wet← rain ∧ u5
wet← sprinkler ∧ u3

Here, the expression πi :: ui means that we independently choose the facts ui to be true with
probability πi. Identifying the logic program with its Clark completion, program P yields the
same distribution as the probabilistic causal model in Example 1.1.5.

Once again, assume that we observe the road to be wet and the sprinkler to be on. In addition,
we ask for the probability π(wet|sprinkler, wet,do(¬sprinkler)) that the road would have been wet
if the sprinkler had been off. To answer this counterfactual query, we proceed as in Example 1.2.6
and build the following twin program PT , where the superscripts a/r stand for the real and
alternative world, respectively.

0.5 :: u1 0.6 :: u2 0.1 :: u3 0.7 :: u4 0.8 :: u5 0.3 :: u6

cloudya ← u1 cloudyr ← u1

raina ← cloudya ∧ u2 rainr ← cloudyr ∧ u2
sprinklera ← cloudya ∧ u3 sprinklerr ← cloudyr ∧ u3
sprinklera ← ¬cloudya ∧ u4 sprinklerr ← ¬cloudyr

weta ← raina ∧ u5 wetr ← rainr ∧ u5
weta ← sprinklera ∧ u3 wetr ← sprinklerr ∧ u3

8 1. Introduction

We intervene according to ¬sprinklera and obtain the modified twin program PT¬sprinklera :

0.5 :: u1 0.6 :: u2 0.1 :: u3 0.7 :: u4 0.8 :: u5 0.3 :: u6

cloudya ← u1 cloudyr ← u1

raina ← cloudya ∧ u2 rainr ← cloudyr ∧ u2
sprinklerr ← cloudyr ∧ u3
sprinklerr ← ¬cloudyr

weta ← raina ∧ u5 wetr ← rainr ∧ u5
weta ← sprinklera ∧ u3 wetr ← sprinklerr ∧ u3

Finally, we can use the modified twin program PT¬sprinklera to compute that the road would
have been wet if the sprinkler had been off with probability

π(wet|sprinkler, wet,do(¬sprinkler)) := π(weta|sprinklerr, wetr) = 0.18.

In Section 3.4.3, we present the material of Kiesel et al. (34), where we employ the twin network
method of Balke and Pearl (5) to compute counterfactual probabilities in acyclic ProbLog programs
as illustrated in Example 1.2.7. Notably, adapting the twin network method of Balke and Pearl (5),
Kiesel’s WhatIf solver extends his aspmc solver to calculate counterfactual probabilities.

In Chapter 4, we provide a fragment of acyclic ProbLog programs, in which the responses to
counterfactual queries uniquely characterize each ProbLog program P up to syntactic equality.
This leads us to the conclusion that ProbLog serves as an effective framework for counterfactual
reasoning.

In Chapter 5, we demonstrate that all negation-free ProbLog programs within the fragment
introduced in Chapter 4 are uniquely determined up to syntactic equality by their induced distri-
bution and the corresponding cause-effect relationships. These cause-effect relationships can be
represented using directed graphs on P, where an edge p→ q signifies that p is a direct cause of q.

Example 1.2.8. The case-effect relationship in Example 1.2.7 is given by the following directed
graph.

sprinkler

cloudy rain wet

In summary, our findings demonstrate that the probabilities π(ϕ) = π(ϕ|∅,do(∅)) and the cor-
responding cause-effect relationships govern the behavior of these programs entirely. Suppose that
we are provided with data sampled from a negation-free ProbLog program P̃ within the fragment
outlined in Chapter 4. Any structure learning algorithm capable of deducing a program within
this fragment, along with the correct cause-effect relationships and distribution, reconstructs P̃
from the data with precision up to syntactic equality. Importantly, the result of this structure
learning algorithm is accurate, that is, it provides the same answers to every counterfactual query
as the hidden program P̃.

1.3 Bochman’s Logical Theory of Causality

Representing causal mechanisms with functional relationships, Sections 1.1 and 1.2 argue that
Boolean causal models and abductive logic programs under the supported model semantics emerge

1.3 Bochman’s Logical Theory of Causality 9

as the formalisms of choice for causal modeling when no cyclic causal relationships are at play.
Next, we introduce Bochman’s causal theories (10) to investigate this modeling assumption.

Bochman (10) takes a more general, logic-based approach to modeling causal mechanisms.
Following Aristotle’s Posterior Analytics (4), he distinguishes between factual knowledge, i.e.
observations or knowledge about what is, and scientific knowledge, which is factual knowledge
explained by causal reasoning. In this thesis, we use the term Aristotelian knowledge to refer
to this notion of scientific knowledge.

Example 1.3.1. If we observe a house fire, this constitutes factual knowledge. Suppose further
that a police inspector finds that the fire is caused by arson. In this case, the police inspector pos-
sesses Aristotelian knowledge, as he not only knows that the house is burning but also understands
the reason why it is burning, i.e., arson.

Bochman (10) then aims for a logical theory of causal reasoning, whose semantics captures
the concept of Aristotelian knowledge. Formally, he models factual knowledge using propositional
logic, i.e. propositional formulas. He then considers causal reasoning as a binary relation (⇒)/2
on factual knowledge that satisfies well-motivated axioms, where ϕ ⇒ ψ indicates that a causal
explanation of the propositional formula ϕ also explains the propositional formula ψ.

Example 1.3.2. Recall the situation in Example 1.1.1 and 1.2.1, i.e., we consider a road that
passes along a field with a sprinkler in it and choose a propositional alphabet

P := {cloudy, sprinkler, rain, wet}.

Here, cloudy means that the weather is cloudy and the proposition sprinkler indicates that the
sprinkler is on. A weather sensor turns the sprinkler on if the weather is sunny, i.e. if ¬cloudy
holds. Rainy weather, indicated by rain, occurs whenever it is cloudy and the road is wet, indicated
by wet, if either it rains or the sprinkler is turned on.

The statement wet → sprinkler ∨ rain means that once we observe the road to be wet, the
sprinkler must be on or it must rain. However, we cannot use the wet road to explain why the
sprinkler is on or why it rains, i.e. we only gain factual knowledge about rain∨sprinkler. Whereas
sprinkler ⇒ wet means both that the road is wet if the sprinkler is on and that the event of the
sprinkler being on causally explains why the road is wet, i.e. we gain Aristotelian knowledge about
wet that is explained by sprinkler.

Humans, however, do not state causal knowledge by explicating the entire binary relation of
cause and effect; we usually state a few causal rules of the form ϕ ⇒ ψ and infer the rest of our
causal knowledge from these rules. Bochman (10) also represents causal reasoning with causal
theories ∆, i.e. sets of causal rules ϕ⇒ ψ for two propositional formulas ϕ and ψ. In this case,
we obtain the result that a formula ρ causally explains a formula σ if ρ ⇒ σ is derivable from ∆
and Bochman’s axioms.

Example 1.3.3. Intuitively, the situation in Example 1.3.2 is captured in the following causal
theory.

¬cloudy ⇒ sprinkler

cloudy ⇒ rain

sprinkler ⇒ wet

rain⇒ wet

However, note that this causal theory cannot explain the proposition cloudy as there is no rule of
the form ...⇒ cloudy.

External variables in causal models and abducibles in abductive logic programs represent
parameters that we do not wish to explain. In Bochman’s framework, this is indicated by stating
that a proposition p ∈ P is self-explained, formally denoted by the default rule p⇒ p.

10 1. Introduction

Example 1.3.4. In Example 1.3.2, we do not expect an explanation for cloudy. Formally, this
means that cloudy is self-explained, that is, we have cloudy ⇒ cloudy. Together with Exam-
ple 1.3.3, this yields the following causal theory.

cloudy ⇒ cloudy

¬cloudy ⇒ sprinkler

cloudy ⇒ rain

sprinkler ⇒ wet

rain⇒ wet

Finally, we observe that it is impossible to explain the event of a dry road, i.e., ¬wet, with the
causal theory above as there is no causal rule of the form ...⇒ ¬wet.

To solve the problem described in Example 1.3.4, we again employ the concept of default
negation. This means we assume that all parameters in our model have a default value that does
not require further explanation. Since all parameters are evaluated as true or false, we can further
choose our alphabet P so that all parameters are false by default. This aligns with intuition in
many real-world examples: For example, a schedule indicates when trains or flights depart and
not when nothing is departing. Hence, if not explicitly stated, we assume by default that no flight
or train leaves. Similarly, we usually assume that houses do not burn. Hence, if we have no reason
to believe in a house fire, we assume that houses do not burn.

Specifically, default negation means that we accept having no explanations for a proposition p
as an explanation for its negation ¬p. In Bochman’s framework, this assertion is stated by asserting
the default rules ¬p⇒ ¬p for every proposition p.

Example 1.3.5. Additionally, assuming that all propositions are false by default in the situation
of Example 1.3.4, means to form the following negative completion ∆nc of the causal theory ∆ in
Example 1.3.4.

cloudy ⇒ cloudy ¬cloudy ⇒ ¬cloudy
¬cloudy ⇒ sprinkler ¬sprinkler ⇒ ¬sprinkler
cloudy ⇒ rain ¬rain⇒ ¬rain
sprinkler ⇒ wet ¬wet⇒ ¬wet
rain⇒ wet

In this thesis, we are not interested in arbitrary causal theories. Instead, we focus on those
causal theories that represent abductive logic programs. Let P := (P,A) be an abductive logic
program. We identify P with the causal theory ∆(P) that consists of a causal rule b1∧ . . .∧bn ⇒ p
for every clause p ← b1 ∧ . . . ∧ bn in P and the default rules u ⇒ u for the abducibles u ∈ A. To
reflect the principle of default negation, we further form the negative completion ∆(P)nc and
add the default rules ¬p⇒ ¬p for all propositions p ∈ P.

Example 1.3.6. Recall the abductive logic program P = (P,A) in Example 1.2.3 that consists
of the logic program

sprinkler ← ¬cloudy
rain← cloudy

wet← rain

wet← sprinkler

and the abducibles A := {cloudy}. In this case, the causal theory ∆(P) is given in Example 1.3.4.
Furthermore, Example 1.3.5 presents the negative completion ∆(P)nc of ∆(P).

1.4 Causal Reasoning in Presence of Cyclic Causal Relationships 11

Applying Leibniz’s principle of sufficient causation (36, p. 268), Bochman asserts that every
observation needs to be explained by causal reasoning. Given the negative completion ∆(P)nc
of the causal theory ∆(P) associated with an abductive logic program P, this means that every
proposition p that holds in an observed world ω needs to be explained by at least one causal rule,
i.e., clause in P. Hence, it is only possible to observe worlds ω that are models of the following
completion (10, Theorem 8.115):

comp(∆(P)nc) :=

p↔ ∨
b1∧...∧bn⇒p∈∆(P)nc

b1 ∧ . . . ∧ bn

p∈P

(1.3)

Bochman (10) calls the models of comp(∆(P)nc) the causal worlds of the causal theory ∆(P)nc.
Informally, these causal worlds give exactly the (possible) Aristotelian knowledge corresponding
to the causal theory ∆(P)nc. Notably, these causal worlds of ∆(P)nc are exactly the supported
models of the abductive logic program P.

Example 1.3.7. Recall the abductive logic program P := (P,A) in Example 1.3.6 and the causal
theory ∆(P)nc in Example 1.3.5. According to (1.3), the causal worlds of ∆(P)nc are exactly the
models of the following constraints:

¬cloudy ↔ sprinkler

cloudy ↔ rain

sprinkler ∨ rain↔ wet

Therefore, we obtain the causal worlds:

ω1 := {cloudy, rain,wet}
ω2 := {sprinkler, wet}.

We observe that these are exactly the supported models of the program P in Example 1.2.4 and
the solutions of the corresponding causal model in Example 1.1.1.

1.4 Causal Reasoning in Presence of Cyclic Causal Rela-
tionships

In Section 1.3, we introduce Bochman’s causal theories (10) as a language for causal reasoning and
Aristotelian knowledge. Notably, the reasoning there aligns with the causal reasoning represented
in Pearl’s causal models (41) and with abductive logic programming (22) under the supported
model semantics. Unfortunately, Bochman’s causal theories yield counterintuitive results once
cyclic causal relationships are at play.

Example 1.4.1. Let h1 and h2 be two neighboring houses. Both houses may start to burn,
denoted start fire(h1) and start fire(h2), causing a fire in h1 and h2, respectively. Furthermore,
assume h1 catches fire, denoted fire(h1), if h2 burns, denoted fire(h2), and vice versa. Accepting
start fire(h1) and start fire(h2) as self-evident events, this situation is modeled by the abductive
logic program P := (P,A), which is given by the logic program

fire(h2)← fire(h1) fire(h1)← fire(h2)

fire(h1)← start fire(h1) fire(h2)← start fire(h2)

and the abducibles A := {start fire(h1), start fire(h2)}.

12 1. Introduction

The causal theory ∆(P)nc is then given by:

fire(h2)⇒ fire(h1) fire(h1)⇒ fire(h2)

start fire(h1)⇒ fire(h1) start fire(h2)⇒ fire(h2)

start fire(h1)⇒ start fire(h1) start fire(h2)⇒ start fire(h2)

¬fire(h1)⇒ ¬fire(h1) ¬fire(h2)⇒ ¬fire(h2)
¬start fire(h1)⇒ ¬start fire(h1) ¬start fire(h2)⇒ ¬start fire(h2)

According to (1.3), this results in the following supported models or causal worlds:

ω1 := ∅
ω2 := {fire(h1), fire(h2)}
ω3 := {start fire(h1), fire(h1), fire(h2)}
ω4 := {start fire(h2), fire(h1), fire(h2)}
ω5 := {start fire(h1), start fire(h2), fire(h1), fire(h2)}

In the causal world ω2, both houses h1 and h2 catch fire even though neither of these houses starts
burning. This contradicts our everyday causal reasoning, as we do not expect houses to catch fire
just because they potentially influence each other.

Example 1.4.1 illustrates that the supported model semantics for abductive logic programming
is the wrong choice to model causal mechanisms with cyclic causal relationships. In particular, we
obtain the present flaw since Bochman (10) accepts cyclic explanations in his causal theories.

Example 1.4.2. The explanation of fire(h1) in the causal world ω2 of Example 1.4.1 is given by

fire(h1)⇒ fire(h2) and fire(h2)⇒ fire(h1),

i.e., we argue that house h1 catches fire because house h2 burns, which catches fire because house h1
burns. In our everyday causal reasoning, however, we do not accept this cyclic argument.

In Section 3.1, we demonstrate that excluding cyclic causal arguments leads to the concept
of Aristotelian knowledge, as provided by the stable models semantics of abductive logic pro-
grams (27; 22). In Section 3.2, building upon abductive logic programming, we introduce weighted
abductive logic programs as a formalism tailored to causal reasoning under uncertainty. Counter-
factual reasoning within weighted abductive logic programming is further discussed in Section 3.3.
We observe that weighted abductive logic programming encompasses widely-used frameworks in
statistical relational artificial intelligence: Markov logic networks (46), LPMLN programs (35),
ProbLog programs (21; 26), and logic programs with annotated disjunctions (62). By embedding
these formalisms into our general framework and transferring our causal reasoning there, we ensure
consistent causal reasoning across the aforementioned formalisms, as elaborated in Section 3.4.

1.5 ProbLog programs and Counterfactual Reasoning

Lastly, we adapt the viewpoint that weighted abductive logic programming is the most general
formalism for capturing (probabilistic) causal reasoning and (probabilistic) Aristotelian knowledge.
If we further assert Reichenbach’s common cause assumption (45) that every dependence among
the modeled random variables is explained by causal reasoning, Section 3.4.3 argues that the
Aristotelian knowledge enabling well-defined counterfactual reasoning corresponds to a fragment
of ProbLog. In Chapter 4, we then prove, under rather mild assumptions, that the counterfactual
probabilities provided by acyclic ProbLog programs are expressive enough to determine these
programs up to syntactic equality. Conjecturing that this behavior persists in the cyclic case, we
argue that the presented causal interpretation of ProbLog yields the theory of probabilistic Boolean
counterfactual reasoning.

Chapter 2

Preliminaries

This chapter introduces the concepts that form the foundation of the theory presented in this thesis.
We discuss the notions of knowledge and counterfactual. Specifically, we provide an overview of
Pearl’s and Bochman’s theories of causality that serve as the cornerstones for our own theory.
Furthermore, we briefly introduce Markov logic networks and probabilistic logic programming.
These formalisms belong to the broader field of statistical relational artificial intelligence, which
combines first-order logic with probabilistic reasoning under uncertainty. In Chapter 3, we then
specifically use probabilistic logic programming to apply our theory of causality and counterfactual
reasoning in contemporary artificial intelligence.

2.1 Knowledge and Counterfactuals

This thesis addresses the issue of counterfactual reasoning, specifically, the task of answering
queries of the form:

“Would Q have occurred if C had taken place before observing evidence E?” (2.1)

Example 2.1.1. Assume that we observe a fire breaking out during a thunderstorm in a house
without a lightning rod. In this case, we can pose the counterfactual question: “Would the fire
have occurred if we had installed a lightning rod before the thunderstorm?”

According to Lewis (37), a counterfactual statement is valid if Q holds in all alternative worlds
minimally deviating from the real world, where we observe the evidence E in such a way that the
constraint C becomes true.

Example 2.1.2. Reconsider the scenario of Example 2.1.1. In the real world, we observe a
fire that breaks out during a thunderstorm in a house without a lightning rod. According to
Lewis (37), the alternative worlds should minimally deviate from this real world in such a way
that the constraint of our house having a lightning rod is satisfied. Finally, the statement “The
fire would not have occurred in our house had we installed a lightning rod” is equivalent to the
fire not occurring in each of these alternative worlds.

However, Lewis’ approach (37) leaves us with the task of constructing these alternative worlds.
In this thesis, we adapt Pearl’s idea (41) for the construction of these alternative worlds, which
itself relies on the availability of explanations for our observations. In particular, the alternative
worlds are obtained by manipulating the explanations for our observations. Thus, Pearl’s coun-
terfactual reasoning requires knowledge (13) or scientific knowledge as given by Aristotle in his
Posterior Analytics (4). This notion of knowledge further builds on the theory of deduction, i.e.,
proof, presented in Aristotle’s Prior Analytics (3). He then distinguishes between deductions and
demonstrations; these are true deductions that follow the “natural order of explanation” (13).

14 2. Preliminaries

“By demonstration I mean a scientific deduction; and by scientific I mean one in virtue of
which, by having it, we understand something. If, then, understanding is as we posited, it
is necessary for demonstrative understanding in particular to depend on things which are
true and primitive and immediate and more familiar than and prior to and explanatory
of the conclusion (for in this way the principles will also be appropriate to what is being
proved). For there will be deduction even without these conditions, but there will not be
demonstration; for it will not produce understanding.” (4, APo, 71b19-25)

According to Aristotle, logically correct deductions or proofs merely result in what we call
factual knowledge—knowledge about what is. Only demonstrations generate understanding and
contribute to what Aristotle calls knowledge (13), or scientific knowledge, which we therefore refer
to as Aristotelian knowledge. Following Sandstad (54), Angioni (1), and Bochman (10, §1.1),
we adopt the viewpoint that the “natural order of explanation” (13) refers to the concept of
causality. Hence, Aristotelian knowledge about a fact A consists of factual knowledge about A,
that is, that A indeed takes place and a causal explanation, providing a reason why A takes place.

Example 2.1.3. In general, assume that lightning strikes or arson are the only possible causes
of fire. In this scenario, from the observation of a fire, we may deduce that arson occurred or a
lightning strike struck our house. This deduction is true, but not a demonstration, as concluding
from a fire to arson or lightning strikes goes against the order of cause and effect. In this case,
we acquire factual knowledge about arson or a lightning strike, but we cannot explain why arson
occurred or why a lightning strike hit our house. However, if we observe a lightning strike hitting
our house and deduce that a fire is breaking out, we respect the causal order of the events. This
is a demonstration, and we gain Aristotelian knowledge about the fire, understanding both that a
fire is breaking out and the reason behind it, which is the lightning strike.

Our approach to counterfactual reasoning presented in Chapter 3 relies on Bochman’s formal-
ization of Aristotelian knowledge (10, §4). Representing factual knowledge and deductions using
propositional logic, Bochman formalizes causal reasoning as a binary relation on propositional for-
mulas, which is subject to certain axioms. In particular, he assumes that causal reasoning satisfies
Aquinas’ natural necessity (32, Ch. 1) and Leibniz’s principle of sufficient causation (36, p. 268),
as stated below.

Law 1 (Aquinas (2, SGA II: 35.4)). “..., given the existence of the cause, the effect must neces-
sarily follow.”

Law 2 (Leibniz (36, p. 268)). “...there is nothing without a reason, or no effect without a cause.”

Remark 2.1.1. Bochman’s representation makes no statement about whether causality is an
ontological principle governing the world or an a priori category necessary to experience the world,
as described by Kant (33).

The Aristotelian knowledge corresponding to our causal reasoning then consists of all states of
affairs or worlds explainable by our causal reasoning. Furthermore, Bochman (10, §5) follows the
idea of Descartes and specifies causal reasoning through causal rules (32, Ch. 1). This approach
aligns Bochman’s theory of Aristotelian knowledge with Pearl’s causal models (41), enabling him
to revise causal reasoning and Aristotelian knowledge based on external interventions.

Example 2.1.4. In Example 2.1.3, the installation of a lightning rod would be considered an
external intervention. In particular, we require Aristotelian knowledge that certain fires are ex-
plained by lightning strikes to conclude that such a fire will not break out after the intervention
of installing a lightning rod.

However, deviating from Aristotle, Bochman (10, §4) allows for cyclic and infinite argu-
ments (39). In Section 3.1, we avoid cyclic or infinite arguments by extending Bochman’s causal
theories with prior knowledge that every demonstration must start with. In Theorem 3.1.7, we then

2.2 Statistical Relational Artificial Intelligence 15

show that the resulting formalism is essentially equivalent to abductive logic programming (22)
under the stable model semantics (27). As a consequence, we argue that abductive logic program-
ming emerges as a correct framework to reason on Aristotelian knowledge. From the perspective
of Pearl’s causal models (41), this means that by translating a Boolean causal model to an abduc-
tive logic program, the semantics of this program precisely specifies the solutions that constitute
Aristotelian knowledge.

The counterfactual reasoning introduced in this thesis further relies on expressing uncertainty
about the prior knowledge that demonstrations need to start with in a probabilistic manner. In
Section 3.2, therefore, we introduce our notion of probabilistic Aristotelian knowledge, represented
by weighted abductive causal theories and weighted abductive logic programs. Furthermore, we
follow the argument of Pearl (41) that an intervention constitutes a minimal change such that a
certain constraint becomes true. Hence, in the case of (2.1), the construction of Lewis’ alterna-
tive worlds should start with the same prior knowledge as the real world, where we observe the
evidence E, and then follow the causal reasoning that results from intervening according to the
constraint C. In particular, we first use our evidence E to learn about the state of the prior knowl-
edge, then we intervene according to the constraint C, and finally, we determine the probability
that the query Q would hold if C had taken place by computing the probability of Q under this
modified probabilistic Aristotelian knowledge.

Example 2.1.5. Reconsider the Examples 2.1.1 and 2.1.3. To answer the corresponding coun-
terfactual query, we first revise our belief in arson or a lightning strike, respectively, based on
the observation of the thunderstorm. In particular, the thunderstorm makes it more likely that
lightning has hit our house, causing the fire. Hence, following Example 2.1.4, we tend to believe
the statement: “The fire would most likely not have occurred had we installed a lightning rod.”

Finally, in Chapter 4, we address the question of whether the ability of counterfactual reasoning
is equivalent to possessing probabilistic Aristotelian knowledge in our sense. First, Example 4.1.4,
credited to Lifschitz by Bochman (10, Example 8.3), demonstrates that, in general, this is not
the case. However, we are able to provide a reasonably large fragment of our formalism in which
probabilistic Aristotelian knowledge can be uniquely reconstructed from the answers to the corre-
sponding counterfactual queries. We conclude that from a probabilistic perspective, the situation
in Example 4.1.4 is merely a borderline case and that counterfactual reasoning usually requires
full Aristotelian knowledge.

2.2 Statistical Relational Artificial Intelligence

The field of statistical relational artificial intelligence encompasses frameworks that combine logic-
based reasoning with uncertainties represented by probabilities. To introduce these frameworks,
we begin by gathering the necessary prerequisites from probability theory.

2.2.1 Probability Theory

In this thesis, we restrict ourselves to finite probability spaces.

Definition 2.2.1 (Probability Space). A probability space is a tuple (Ω, π) consisting of a finite
set Ω, called sample space, and a probability mass function π : Ω→ [0, 1] such that∑

ω∈Ω
π(ω) = 1.

In this context, an event is a subset of the sample space A ⊆ Ω. To every event A ⊆ Ω we assign
the probability

π(A) :=
∑
ω∈A

π(ω).

16 2. Preliminaries

Finally, we write
π(A1, ..., An) := π(A1 ∩ ... ∩An)

for events A1, ..., An, n ∈ N≥1.

Example 2.2.1. Let us throw a fair die. In this case, we have six possible outcomes, which we
model with the sample space Ω := {1, 2, 3, 4, 5, 6}, where ω ∈ Ω means that the die shows ω. As
the die is supposed to be fair, we have the probability mass function π : Ω → [0, 1], ω 7→ 1/6. In
the probability space (Ω, π), we find the event A := {2, 4, 6} ⊆ Ω of obtaining an even number
with probability π(A) := 1/2.

We primarily employ random variables to reason about events.

Definition 2.2.2. A random variable is a function p : Ω → R and a distribution of p is
a probability space (Ω, π). For a possible value r ∈ R we then define the event of p tak-
ing the value r as {p = r} := p−1(r) and denote its probability by π(p = r) := π(p−1(r)). We
call p a Boolean random variable if R = {True, False} and write π(p) := π(p = True) as well
as π(¬p) := π(p = False).

Finally, a joint distribution of the random variables pi : Ωi → Ri, 1 ≤ i ≤ n is a distribution
of the random variable

∏
i pi :

∏
iΩi →

∏
iRi, (ω1, ..., ωn) 7→ (p1(ω1), ..., pn(ωn)). Note that by

projection, every joint distribution yields a distribution of the random variables pi.

Example 2.2.2. Recall the situation in Example 2.2.1 and assume that we win one euro if the
die shows an even number; otherwise, we lose one euro. This bet can be modeled with the random
variable

p : Ω→ {1,−1} ω 7→

{
1, if ω ∈ A
−1, otherwise

.

Here, p(ω) = 1 means that we win one euro, and p(ω) = −1 means we lose one euro. Specifically,
for the event A of Example 2.2.1, we have A = {p = 1}.

Example 2.2.3. Consider a field with a sprinkler in it. The grass is wet if the sprinkler is on or
it rains. We model this scenario with the following Boolean random variables

sprinkler : {True, False} → {True, False}, x 7→ x

rain : {True, False} → {True, False}, x 7→ x

wet : {True, False} → {True, False}, x 7→ x.

Here, sprinkler = True indicates that the sprinkler is on, rain = True indicates that it rains,
and wet = True indicates that the grass is wet. A joint distribution of these three random variables
is a distribution of the random variable

sprinkler × rain× wet : {True, False}3 → {True, False}3, (x, y, z) 7→ (x, y, z).

For instance, we obtain a joint distribution by setting

π(False, False, False) := π(¬sprinkler,¬rain,¬wet) := 0.2

π(True, False, False) := π(sprinkler,¬rain,¬wet) := 0

π(False, True, False) := π(¬sprinkler, rain,¬wet) := 0

π(False, False, T rue) := π(¬sprinkler,¬rain,wet) := 0

π(True, True, False) := π(sprinkler, rain,¬wet) := 0

π(True, False, T rue) := π(sprinkler,¬rain,wet) := 0.3

π(False, True, True) := π(¬sprinkler, rain, wet) := 0.2

π(True, True, True) := π(sprinkler, rain, wet) := 0.3.

2.2 Statistical Relational Artificial Intelligence 17

We find that the sprinkler is on if the first component x of a tuple (x, y, z) ∈ {True, False}3 is
true. If we denote by π1 : {True, False}3 → {True, False}, (x, y, z) 7→ x, the projection to the
first component, we therefore find sprinkler = π1 ◦ (sprinkler × rain × wet), which shows that
the sprinkler is on with a probability of

π(sprinkler) = π(π1 ◦ (sprinkler × rain× wet) = True) =

= π(sprinkler,¬rain,¬wet) + π(sprinkler, rain,¬wet)+
+ π(sprinkler,¬rain,wet) + π(sprinkler, rain, wet) = 0.6.

Informally, we adopt the viewpoint of Bayesianism, where the probability π(A) ∈ [0, 1] of an
event A ⊆ Ω represents a rational agent’s degree of belief in A being true. Here, “rational” means
that, for any amount of money S ∈ R, the agent is willing to place at most π(A) · S on the truth
of A in a bet with a return of S (63, pp.500-501). When observing an event B, a rational agent
is supposed to revise his beliefs as follows.

Definition 2.2.3 (Conditional Probability). Let (Ω, π) be a probability space and let A,B ⊆ Ω
be two events. In this case, we define the probability of A conditioned on B by

π(A|B) :=

π(A,B)

π(B)
if π(B) ̸= 0

0, otherwise
.

Example 2.2.4. Assume we observe that someone wins one euro in the game described in Ex-
ample 2.2.2. This observation leads to a probability of π(2|p = 1) := 1/3 for the die to show two.

Finally, conditional probabilities enable us to assess the independence of events. In particular,
an event A is considered independent of an event B if observing B does not alter our belief in A.
This concept is formalized in the following definition.

Definition 2.2.4 (Independence). Let (Ω, π) be a probability space and let A1, . . . , An ⊆ Ω be
events for a natural number n ∈ N. We say that A1, . . . , An are (mutually) independent if for
any tuple of indices (i1, . . . , ik) ∈ {1, . . . , n}k, 1 ≤ k ≤ n, with ij ̸= il for all 1 ≤ j, l ≤ n, we have

π(Ai1) = π(Ai1 |Ai2 , . . . , Aik) or equivalently π(Ai1 , . . . , Aik) =
k∏
i=1

π(Aik).

Otherwise, we call the events A1, . . . , An (mutually) dependent.

Example 2.2.5. Consider throwing a second die in the situation described in Example 2.2.1.
Now, we have 36 possible outcomes Ω := {(1, 1), ..., (6, 6)}, where (i, j) ∈ Ω signifies that the
first die shows i while the second die shows j. Assuming that the result of the first die does not
influence the outcome of the second die, we have π((i, j)) := π(i) · π(j) := 1/36. This reflects the
independence of the events of the first die showing i and the second die showing j.

2.2.2 Propositional Logic and LogLinear Models

Next, we introduce propositional logic, the simplest form of logic, as a formalism to reason about
Boolean functions.

Propositional Logic

In this thesis, we employ propositional logic to reason about truth, i.e. to specify sets of Boolean
functions that satisfy certain constraints. However, to reason about Boolean functions, we first
need to agree on the domain of these functions.

18 2. Preliminaries

Definition 2.2.5 (Propositional Alphabet). A propositional alphabet P is a finite set whose
elements we call propositions.

Example 2.2.6. Assume that a road passes through a field with a sprinkler in it. The sprinkler
is activated by a weather sensor when it is not cloudy. In addition, the road pavement is wet when
the sprinkler is on or when it rains. Lastly, when the road is wet, it becomes slippery.

Next, cloudy denotes the fact that the weather is cloudy, sprinkler denotes the fact that the
sprinkler is on, rain denotes that it is raining, wet denotes that the pavement of the road is wet,
and slippery means that the road is slippery. Hence, we gave a propositional alphabet

P := {cloudy, sprinkler, rain, wet, slippery}

to reason on the described scenario.

Fix a propositional alphabet P. As mentioned earlier, our objective is to reason on the truth
of the propositions in P.

Definition 2.2.6 (Structure). A (P-)structure ω : P → {True, False}, p 7→ pω is a Boolean
function on P. It is important to note that such a function can be safely identified with the set
of all propositions p ∈ P that are true in ω, i.e., with the set ω := {p ∈ P: pω = True}.

Example 2.2.7. In the situation of Example 2.2.6, a structure ω is a complete state description
such as

cloudy 7→ True sprinkler 7→ False

rain 7→ True wet 7→ True

slippery 7→ True.

Next, in formulas, we specify constraints on the structures under consideration.

Definition 2.2.7 (Propositional Formulas). The (propositional) formulas in the alphabet P
or (P)-formulas are recursively defined by the following axioms:

i) The falsity symbol ⊥ ̸∈ P and the truth symbol ⊤ ̸∈ P are formulas.

ii) Every proposition p ∈ P is an atomic formula or atom.

iii) If ϕ is a formula, then ¬ϕ is also a formula.

iv) If ϕ and ψ are formulas, then (ϕ ∧ ψ) is also a formula.

A literal is a formula l ∈ {p,¬p} for an underlying proposition p ∈ P. We refer to l as a
positive literal if it is of the form p ∈ P and as a negative literal otherwise.

Remark 2.2.1. In situations where there is no possible confusion about the meaning of a for-
mula ϕ, we denote ϕ omitting parentheses (and).

Example 2.2.8. In the alphabet of Example 2.2.6, we can form the formulas

sprinkler, ¬cloudy and (sprinkler ∧ ¬cloudy).

Here, sprinkler is an atom or (positive) literal, whereas ¬cloudy is a (negative) literal. Finally,
the formula (sprinkler ∧ ¬cloudy) is neither an atom nor a literal. As no confusion occurs if we
omit parentheses, we further denote the last formula by sprinkler ∧ ¬cloudy.

Further, we define the meaning or semantics of a propositional formula.

Definition 2.2.8 (Models Relation). Whether a structure ω satisfies or models a formula ϕ,
denoted by ω |= ϕ, is defined recursively based on Definition 2.2.7.

2.2 Statistical Relational Artificial Intelligence 19

i) We find ω ̸|= ⊥ and ω |= ⊤, i.e., ω |= ⊥ is not valid for any structure ω.

ii) For every atomic formula p ∈ P we find ω |= p if and only if pω = True, that is, p ∈ ω.

iii) For every formula ϕ we find ω |= ¬ϕ if and only if ω ̸|= ϕ, i.e., if ω |= ϕ is not valid.

iv) For every two formulas ϕ and ψ we find ω |= (ϕ ∧ ψ) if and only if ω |= ϕ and ω |= ψ.

Next, the structure ω satisfies or models a set of formulas Φ, written ω |= Φ, if and only if we
find ω |= ϕ for every formula ϕ ∈ Φ. In this case, we also say that ω is a model of Φ.

Remark 2.2.2. We also associate a structure ω : P → {True, False} with the set of literals it
renders true, that is, with {p ∈ P: pω = True} ∪ {¬p: p ∈ P, pω = False}.

Example 2.2.9. In the case of the structure ω in Example 2.2.7, we find ω ̸|= ⊥, ω |= ⊤,
ω |= cloudy, ω |= ¬sprinkler, ω |= (cloudy ∧ ¬sprinkler) and ω ̸|= (wet ∧ ¬slippery).

Notation 2.2.1. For two formulas ϕ and ψ we use the following abbreviations.

i) We write (ϕ ∨ ψ) for ¬(¬ϕ ∧ ¬ψ).

ii) We write (ϕ→ ψ) for (¬ϕ ∨ ψ).

iii) We write (ϕ← ψ) for (ψ → ϕ).

iv) We write (ϕ↔ ψ) for ((ϕ→ ψ) ∧ (ψ → ϕ)).

Example 2.2.10. In the scenario of Example 2.2.6, (cloudy ∨ slippery) means that it is cloudy
or the road is slippery. Similarly, (rain → wet) means that the road is wet if it rains and
(wet↔ slippery) means that the road is slippery if and only if it is wet.

Remark 2.2.3. Again, we denote a formula ϕ by omitting parentheses (and) if no confusion is
possible.

Finally, we also would like to express that a formula subsumes another formula.

Definition 2.2.9 (Semantic Entailment). A formula ϕ (semantically) entails a formula ψ,
written ϕ |= ψ, if whenever ω |= ϕ we also find ω |= ψ, i.e. if every structure modeling ϕ also
models ψ. Analogously, a set of formulas Φ (semantically) entails a formula ψ, written Φ |= ψ,
if for every structure ω we find ω |= ψ whenever ω |= Φ. We call Φ consistent if Φ has at least
one model, i.e. if Φ ̸|= ⊥.

A set of formulas Φ is deductively closed if whenever Φ |= ψ we find ψ ∈ Φ. The deductive
closure of a set of formulas Φ is the smallest deductively closed set Φ̄ such that Φ ⊆ Φ̄. Finally,
we call a consistent deductively closed set of formulas Φ a world if Φ is maximal with respect to
the subset relation (⊆)/2.

Notation 2.2.2. We observe that every world Φ = L̄ is the deductive closure of the set of its
literals L := {l ∈ {p,¬p} : p ∈ P, l ∈ Φ}. As Φ is consistent and maximal regarding the subset
relation (⊆)/2, we further find that L := (L ∩P) ∪ {¬p: p ∈ P, p ̸∈ Φ}. Hence, we can identify Φ
with the set of propositions L ∩P.

As we also identify structures with sets of propositions in Definition 2.2.6, we shall henceforth
interchangeably use the terms “structure”, “subset of propositions”, and “world”. Specifically, we
treat worlds and structures as partially ordered by the subset relation (⊆)/2.

Example 2.2.11. In the alphabetP of Example 2.2.6, we find (cloudy∧¬sprinkler) |= ¬sprinkler
and (cloudy ∧ ¬sprinkler) ̸|= rain.

However, we wish to reason not only on formulas, but also on their certainty.

20 2. Preliminaries

LogLinear Models

Fix a joint distribution π on a propositional alphabet P. Furthermore, assume that the relevant
information about π is contained in the n probabilities π(ϕi) ∈ (0, 1) of mutually exclusive for-
mulas ϕi, where 1 ≤ i ≤ n and n ∈ N. Here, this means that the distribution π results from the
following principle of indifference:

Law 3 (Principle of Indifference). We consider two possible values of a random variable p as
equally probable when we have no reason to prefer one value over the other.

Example 2.2.12. Let us throw a die. We denote by 1, 2, 3, 4, 5, and 6 that the die shows one,
two, three, four, five, and six, respectively, resulting in the alphabet

P := {1, 2, 3, 4, 5, 6}.

If we have no further information about the die, according to the principle of indifference in Law 3,
we consider the die to be fair, i.e., we assume that throwing the die results in i with a probability
of π(i) := 1/6 for all 1 ≤ i ≤ 6.

Assume we are further informed that the die is biased and shows 1 or 2 with probability 1/2,
that is, π(1 ∨ 2) = 1/2, and 6 with probability 1/10, i.e., π(6) = 1/10. According to the principle
of indifference, this results in the following probabilities:

π(1) = 1/4 π(2) = 1/4 π(3) = 4/30

π(4) = 4/30 π(5) = 4/30 π(6) = 1/10

In particular, we first distribute the probability π(1∨2) = 1/2 uniformly to the events 1 and 2 and
set π(6) := 1/10. Finally, we distribute the remaining probability mass of 1−π(1∨2)−π(6) = 4/10
uniformly to the remaining events 3, 4, and 5.

Unfortunately, we need the mutual exclusivity of the formulas ϕi, 1 ≤ i ≤ n, to apply the
principle of indifference in Law 3 for extending the probabilities π(ϕi) to a distribution on the
alphabet P.

Example 2.2.13. Recall the situation of Example 2.2.12 and suppose we learn that the die
shows 1 or 2 with probability π(1 ∨ 2) = 1/3. Further, assume we also find out that the die
shows 2 or 3 with probability π(2∨ 3) = 1/3. Now, the principle of indifference in Law 3 does not
tell us how to merge the information about throwing 2, provided by the probabilities π(1∨2) = 1/3
and π(2 ∨ 3) = 1/3, to get a joint distribution π on P.

Suppose that the relevant information about the joint distribution π on the alphabet P is
contained in the n probabilities π(ϕi) ∈ (0, 1) of the formulas ϕi, where 1 ≤ i ≤ n and n ∈ N,
which are no longer assumed to be mutually exclusive. This now means that the distribution π
results from maximizing the entropy

H(π) :=
∑
p∈P

(− ln(π(p))) · π(p)

under the constraint that the formulas ϕi hold with probability π(ϕi) for 1 ≤ i ≤ n.
Since the function − ln : (0, 1]→ [0,∞) is strictly monotonically decreasing, with − ln(0) =∞

and − ln(1) = 0, we interpret − ln(π(p)) as our degree of surprise about the proposition p ∈ P.
In particular, the number − ln(π(p)) becomes large for small probabilities π(p); that is, the more
we are surprised about p being true, the larger the number − ln(π(p)) becomes. Hence, we inter-
pret H(π) as the average degree of surprise in a distribution π. We further assume that the more
we are surprised by our observations, the more randomness is captured in π, and that randomness
stands for missing information. In fact, entropy H(π) is known to measure missing information
in a distribution π (57).

2.2 Statistical Relational Artificial Intelligence 21

Remark 2.2.4. Note that − ln : (0, 1]→ [0,∞) is used in the definition of entropy, as one wants
the entropy to be additive regarding the distributions of independent random variables.

Given that we only know about the probabilities π(ϕ1), . . . , π(ϕn), it makes a priori sense to
assume the distribution π on the propositions P that extends the probabilities π(ϕ1), . . . , π(ϕn) by
maximizing the missing information, that is, the entropyH(π). Maximizing entropy also resembles
the principle of indifference in Law 3 if the formulas ϕi are mutually exclusive (19).

However, in general, maximizing the entropy does not yield a distribution that can be easily
described using the probabilities π(ϕi), 1 ≤ i ≤ n. Nevertheless, as the distribution π is essentially
determined by giving one number for every formula ϕi, 1 ≤ i ≤ n, one aims for a parameterization
of π that is also given by a number wi ∈ R for every formula ϕi, 1 ≤ i ≤ n. Here, we apply the
following result of Berger et al. (8).

Parametrization 4 (Berger et al. (8)). We find n degrees of certainty wi ∈ R, 1 ≤ i ≤ n such
that π is given by setting

π(ω) :=

exp

∑
ω|=ϕi

wi

∑

ω′ world

exp

 ∑
ω′|=ϕi

wi

for every world ω.

Finally, a LogLinear model of Richardson and Domingos (46) formalizes a set of formulas with
assigned degrees of certainty in the sense of Berger et al. (8).

Definition 2.2.10 (LogLinear Models). A LogLinear model (with binary features) is a
set Φ consisting of weighted constraints (w, ϕ), where w ∈ R ∪ {∞} is a real weight and ϕ is a
formula.

Example 2.2.14. Recall the situation in Example 2.2.6 and consider a road that passes through
a field with a sprinkler in it. We denote by cloudy that the weather is cloudy. The sprinkler may
be switched on, denoted sprinkler, by a weather sensor in the event of sunny weather, that is, if
¬cloudy holds. By rain we denote that it is raining and by wet we denote that the pavement of
the road is wet, which happens if it rains or if the sprinkler is on. Finally, the road is slippery,
denoted slippery, if it is wet. Hence, we consider the propositional alphabet

P := {cloudy, sprinkler, rain, wet, slippery}

to reason on the described scenario, which might lead to the LogLinear model

Φ := {(ln(2), cloudy → rain), (ln(3),¬cloudy → sprinkler), (∞, wet↔ rain)}.

Parametrization 4 then yields the following semantics for LogLinear models.

Definition 2.2.11 (Semantics of LogLinear Models). Given a LogLinear model Φ, a possi-
ble world ω is a world that models each hard constraint (∞, ϕ) ∈ Φ, i.e., ω |= ϕ when-
ever (∞, ϕ) ∈ Φ. We associate with every possible world ω the weight

wΦ(ω) := w(ω) :=
∏

(w,ϕ)∈Φ
w ̸=∞
ω|=ϕ

exp(w) = exp

∑

(w,ϕ)∈Φ
w ̸=∞
ω|=ϕ

w

22 2. Preliminaries

and set w(ω) = 0 for every world ω that is not a possible world. Further, we define the weight of
a formula ϕ to be

w(ϕ) :=
∑

ω world
ω|=ϕ

w(ω).

Finally, we interpret weights as degrees of certainty and assign to each world or formula the
probability

πΦ() := π() :=
w()

w(⊤)
.

Remark 2.2.5. Let Φ be a LogLinear model. Upon committing to Parametrization 4, there exists
no intuitive interpretation of the weighted constraints (w, ϕ) ∈ Φ with real weights w ∈ R. Only
hard constraints (∞, ϕ) ∈ Φ encode that a formula ϕ necessarily holds.

Example 2.2.15. In the situation of Example 2.2.14, we find π(rain|cloudy) := 2/3 as well
as π(sprinkler|¬cloudy) := 3/4. Furthermore, we deduce that the road is slippery if and only if
it is wet.

2.2.3 Relational First-Order Logic and Markov Logic Networks

When modeling with propositional alphabets, propositions often indicate that elements in a do-
main satisfy specific properties. Next, we aim to extend our language to express such properties.

Example 2.2.16. Consider a group G := {p1, ..., pn}, which regularly meets in a pub. Each mem-
ber of G may start smoking spontaneously, denoted spontaneously smokes(pi), where 1 ≤ i ≤ n.
Furthermore, a group member pi ∈ G smokes, denoted smokes(pi), if he either smokes sponta-
neously or if there is another smoking group member pj ∈ G, i.e., smokes(pj). This behavior is
expressed by the following propositional formulas

spontanously smokes(pi)→ smokes(pi), 1 ≤ i ≤ n (2.2)

smokes(pi)→ smokes(pj), 1 ≤ i, j ≤ n (2.3)

Since all formulas of the form (2.2) and (2.3) only differ in the mentioned group members, we
would like to summarize them with the templates

spontanously smokes(X)→ smokes(X) (2.4)

smokes(X)→ smokes(Y) (2.5)

for variables X and Y .

We identify templates like (2.4) and (2.5) with universally closed formulas in prenex normal
form that can be formulated within relational alphabets. This fragment of first-order logic is
characterized by allowing no function symbols, no existential quantifiers, only permitting finitely
many constants and predicate symbols, and restricting universal quantifiers to the beginning of
formulas. With this limitation, we can employ the grounding method to translate our fragment
of first-order logic into propositional logic, facilitating the computation of Herbrand models for a
given formula.

In this way, we denote constraints that are symmetric with respect to permutations of domain
elements. Introducing these symmetries in LogLinear models not only speeds up computations,
but also facilitates the learning task. Specifically, assuming that domain elements behave in the
same way shrinks the search space of possible models for a given set of data.

2.2 Statistical Relational Artificial Intelligence 23

Relational First-Order Logic

Formally, we express the properties of elements in a domain, such as smoking in Example 2.2.16,
with relational alphabets.

Definition 2.2.12 (Relational Alphabet (24, §1B, p. 4)). A variable is an expression of the
form Xj for a natural number j ∈ N. Further, a (relational) alphabet is a tuple A := (C,P)
consisting of

a finite set of constants C := C(A) = {c1, ..., cl} and

a finite set of predicates P := P(A) = {p1, ..., pm}, each equipped with an arity ar(pi) ∈ N≥0.

Furthermore, the sets C and P are disjoint with Xj ̸∈ C and Xj ̸∈ P for all j ∈ N.

Remark 2.2.6. We do not allow function symbols in relational alphabets.

Example 2.2.17. To represent the scenario in Example 2.2.16, we introduce the constants

C := G = {p1, ..., pn}.

Further, we introduce predicates P := {spontaneously smokes, smokes}, where both predicates
spontaneously smokes and smokes have arity one.

Notation 2.2.3. In this thesis, we refer to variables Xj , j ∈ N by strings starting with an
uppercase letter.

Fix a relational alphabet A := (C,P). We use the alphabet A to reason on relations in the
domain of constants C.

Definition 2.2.13 (Atoms and Ground Atoms). An atom is an expression A := p(t1, ..., tn),
where p ∈ P is a predicate of arity ar(p) := n and where ti is a variable or constant for 1 ≤ i ≤ n.
Furthermore, we say that A is ground if t1, ..., tn ∈ C are constants. A (Herbrand) structure ω
is then a set of ground atoms, representing the set of all valid relations, i.e., we consider p(t1, ..., tn)
as valid if p(t1, ..., tn) ∈ ω. Note that a Herbrand structure ω also denotes a structure of the
propositional alphabet P(A) that consists of all ground atoms in the alphabet A.

Remark 2.2.7. As there are only finitely many predicates and constants in the alphabet A, it
gives rise to only finitely many ground atoms. Therefore, the propositional alphabet P(A) is a
finite set. In particular, we observe that every Herbrand structure ω ⊆ P(A) is a finite set.

Example 2.2.18. In Example 2.2.17, we obtain the atoms smokes(p1) and smokes(X1). The
expression smokes(p1) is a ground atom, whereas the expression smokes(X1) is not.

Further, we can form the following Herbrand structures:

ω1 := ∅
ω2 := {spontaneously smokes(p1), smokes(p1), ..., smokes(pn)}
ω3 := {smokes(p1)}

Here, ω1 denotes the situation where nobody in the group G smokes. The structure ω2 means
that p1 starts to smoke spontaneously and all members of the group p1, ..., pn smoke. Lastly, ω3

means that no one starts smoking spontaneously and we find that the group member p1 smokes.

First-order formulas are now used to reason on Herbrand structures.

Definition 2.2.14 (First-Order Formula). A first-order formula ϕ with free variables var(ϕ)
is recursively defined by the following axioms.

i) The falsity symbol ⊥ and the truth symbol ⊤ are first-order formulas with

var(⊥) := var(⊤) := ∅.

24 2. Preliminaries

ii) Every atom p(t1, ..., tn) is a first-order formula with

var(p(t1, ..., tn)) := {ti : ti variable, 1 ≤ i ≤ n}.

iii) If ϕ is a first-order formula, then ¬ϕ is also a first-order formula. In this case, we set

var(¬ϕ) := var(ϕ).

iv) If ϕ and ψ are first-order formulas, also (ϕ ∧ ψ) is. In this case, we set

var((ϕ ∧ ψ)) := var(ϕ) ∪ var(ψ).

v) If ϕ is a first-order formulas with a free variable X ∈ var(ϕ), also (∀Xϕ) is a first-order
formula with free variables

var((∀Xϕ)) := var(ϕ) \ {X}.

Notation 2.2.4. Once again, we employ the abbreviations in Notation 2.2.1 to represent first-
order formulas in the relational alphabet A. In addition, one usually writes (∃Xϕ) for a formula of
the form ¬(∀Xϕ). Furthermore, if there is no possible confusion about the meaning of a formula ϕ,
we denote ϕ omitting parentheses (and).

Example 2.2.19. In the alphabet of Example 2.2.17, we can construct the following first-order
formulas.

ϕ1 := ∀X¬smokes(X)

ϕ2 := ∀Xspontaneously smokes(X)→ smokes(X)

ϕ3 := ∀Xsmokes(X)→ smokes(Y)

The formula ϕ1 then means that nobody smokes, ϕ2 means that everybody who starts smoking
spontaneously actually smokes. Finally, ϕ3 has no intended meaning. However, when replacing Y
with a constant pi for 1 ≤ i ≤ n, ϕ3 leads to the restriction that the group member pi smokes if
there is another member of the group that smokes.

We employ ground substitutions to assign a truth value to an arbitrary first-order formula ϕ.

Definition 2.2.15 (Ground Substitution and Herbrand Model). A ground substitution is a
function γ : {Xj}j∈N → C, V 7→ V γ that assigns a constant to every variable. For a variable X
and a constant c ∈ C we further define the ground substitution

γ[c/X] : {Xj}j∈N → C, Xj 7→

{
Xγ
j , Xj ̸= X

c, Xj = X
.

Finally, we extend every ground substitution γ to the set of constants C by setting cγ := c for
every constant c ∈ C. Whether a Herbrand structure ω satisfies a first-order formula ϕ under a
ground substitution γ, written (ω, γ) |= ϕ, is then recursively defined as follows:

i) We find (ω, γ) ̸|= ⊥ and (ω, γ) |= ⊤.

ii) For every atom p(t1, ..., tn) we find (ω, γ) |= p(t1, ..., tn) if and only if p (tγ1 , ..., t
γ
n) ∈ ω.

iii) For every formula ϕ we find (ω, γ) |= ¬ϕ if and only if (ω, γ) ̸|= ϕ.

iv) For every two formulas ϕ and ψ we find (ω, γ) |= (ϕ ∧ ψ) if and only if (ω, γ) |= ϕ
and (ω, γ) |= ψ.

v) For every formula ϕ with a free variable X ∈ var(ϕ) we find (ω, γ) |= (∀Xϕ) if and only if
(ω, γ[c/X]) |= ϕ for every constant c ∈ C.

2.2 Statistical Relational Artificial Intelligence 25

Let ϕ be a formula that does not mention any free variables, that is, var(ϕ) = ∅. In this case, for
any Herbrand structure ω, we observe either (ω, γ) |= ϕ or (ω, γ) ̸|= ϕ independently of the ground
substitution γ. In the former case, we say that ω is a Herbrand model of ϕ and write ω |= ϕ.

Remark 2.2.8. Going back to Tarski (58), one usually associates first-order formulas with more
general models, also capturing relations on arbitrary domains and not only on the domains of
constants (12, Definition 32).

Example 2.2.20. Recall the formula

ϕ3 := ∀Xsmokes(X)→ smokes(Y)

from Example 2.2.19, and let γ : {Xj}j∈N → {p1, ..., pn} be a ground substitution with Y γ = pj .
A Herbrand structure ω now satisfies ϕ3 under the ground substitution γ if and only if

(ω, γ[pi/X]) |= smokes(pi)→ smokes(pj)

for all 1 ≤ i ≤ n, that is, we find pj smoking in ω if there exists another smoking group member.

However, in this thesis, we do not study arbitrary first-order formulas. Instead, we restrict
our interest to the following fragment of relational first-order logic that can be translated into
propositional logic.

Definition 2.2.16 (Quantifier-Free Formula, Universal Formula, Universally Closed Formula). A
quantifier-free formula ϕ with (free) variables var(ϕ) is recursively defined by Axioms i) – iv)
of Definition 2.2.14:

i) The falsity symbol ⊥ and the truth symbol ⊤ are quantifier-free formulas with

var(⊥) := var(⊤) := ∅.

ii) Every atom p(t1, ..., tn) is a quantifier-free formula with

var(p(t1, ..., tn)) := {ti : ti variable, 1 ≤ i ≤ n}.

iii) If ϕ is a quantifier-free formula, then ¬ϕ is also a quantifier-free formula with

var(¬ϕ) := var(ϕ).

iv) If ϕ and ψ are quantifier-free formulas, also (ϕ ∧ ψ) is. In this case, we set

var((ϕ ∧ ψ)) := var(ϕ) ∪ var(ψ).

A literal L is a quantifier-free formula A or ¬A for an atom A. We call L a positive literal if it
is of the form A and a negative literal otherwise.

A universal formula (in prenex normal form) is a first-order formula ψ of the form

∀Y1
...∀Yn

ϕ

for a quantifier-free formula ϕ. Further, we call ψ a universally closed formula if addition-
ally var(ψ) = ∅, i.e., var(ϕ) = {Y1, ..., Yn}. In this case, we also call ψ the universal closure of
the quantifier-free formula ϕ. As we find var(ψ) = ∅ for every universally closed formula ψ, we
find that a Herbrand structure ω is a Herbrand model of ψ if ω |= ψ in Definition 2.2.17.

Remark 2.2.9. Universal formulas are usually defined in a more elaborate way (12, Definition 14).
However, every such formula can be translated into a universal formula in prenex normal form as
defined in Definition 2.2.16 with the same models in the sense of Remark 2.2.8 (12, Theorem 37).

26 2. Preliminaries

For universally closed formulas, a model as outlined in Remark 2.2.8 exists if and only if there
exists a Herbrand model as defined in Definition 2.2.17 (12, Corollary 65). Hence, if we want to
check whether a given universally closed formula is satisfiable, i.e. whether it possesses a model
in the sense of Remark 2.2.8, it is sufficient to check whether it has a Herbrand model.

As we only allow for finitely many predicates and constants, there are only finitely many
Herbrand structures, making a search for a Herbrand model accessible for computation. This is a
classical motivation for considering Herbrand models in computer science.

Example 2.2.21. In the alphabet of Example 2.2.17, we can construct the following quantifier-
free formulas.

ϕ1 := ¬smokes(X)

ϕ2 := spontaneously smokes(X)→ smokes(X)

ϕ3 := smokes(X)→ smokes(Y)

The formula ϕ1 is a negative literal, while ϕ2 and ϕ3 are not literals. They give rise to the following
universally closures:

ψ1 := ∀X¬smokes(X)

ψ2 := ∀X(spontaneously smokes(X)→ smokes(X))

ψ3 := ∀X∀Y (smokes(X)→ smokes(Y))

Here, ψ1 means that nobody is smoking, ψ2 means that everybody who starts smoking sponta-
neously actually smokes, and ψ3 means that somebody smokes if there is another smoking group
member.

Quantifier-free formulas, respectively, universally closed formulas, now yield the desired tem-
plates. Using the grounding method, they can be translated into propositional logic, facilitating
the computation of Herbrand models.

Definition 2.2.17 (Ground Instances). Let ϕ be a quantifier-free formula. To every ground
substitution γ we associate the ground instance ϕγ by recursion over Definition 2.2.16:

i) For the falsity symbol ⊥ and the truth symbol ⊤ we have ⊥γ := ⊥ and ⊤γ := ⊤.

ii) For an atomic formula p(t1, ..., tn) we have p(t1, ..., tn)
γ := p (tγ1 , ..., t

γ
n) .

iii) If ϕ is a formula, we have (¬ϕ)γ := ¬ϕγ .

iv) If ϕ and ψ are formulas, we find (ϕ ∧ ψ)γ := (ϕγ ∧ ψγ).

Finally, let ϕ be a quantifier-free formula. The grounding ϕ̄ of the formula ϕ is the set of all
ground instances ϕγ of ϕ. If Φ is a set of quantifier-free formulas, we further define the grounding
of Φ as the set Φ̄ :=

⋃
ϕ∈Φ ϕ̄.

Example 2.2.22. In Example 2.2.21, we find that the formula ϕ3 := smokes(X) → smokes(Y)
has the ground instances

smokes(pi)→ smokes(pj), 1 ≤ i, j ≤ n. (2.6)

Let ψ = ∀Y1
...∀Yn

ϕ be the universal closure of the quantifier-free formula ϕ. Grounding now
enables us to translate the formula ψ to a finite set of propositional formulas:

As the alphabet A mentions only finitely many predicates and constants, the grounding ϕ̄ gives
rise to a finite set of propositional formulas in the alphabet P(A) consisting of all ground atoms
in A. One then verifies that for every ground substitution γ and for every Herbrand structure ω
we find (ω, γ) |= ϕ if and only if ω |= ϕγ in propositional logic. In particular, we find ω |= ψ if
and only if ω |= ϕ̄ in propositional logic. Translating universally closed formulas in prenex normal
form to a finite set of formulas in a finite propositional alphabet facilitates the computation of
Herbrand models.

2.2 Statistical Relational Artificial Intelligence 27

Example 2.2.23. In Example 2.2.21, we find that the Herbrand models of the universally closed
formula

ψ3 := ∀X∀Y smokes(X)→ smokes(Y)

are exactly given by the P(A)-structures ω that satisfy all the formulas (2.6) in propositional logic,
that is, in the sense of Definition 2.2.8. Again, we denote by P(A) the set of all ground atoms.

Remark 2.2.10. Given a finite set of universally closed formulas in prenex normal form, by
construction, these formulas mention only finitely many variables. Hence, once the formulas
are fixed, we may also commit ourselves to finitely many variables X1, ..., Xn. Here, we introduce
infinitely many variables only for the convenience of formulating more formulas in a fixed alphabet.

Markov Logic Networks

Let ∀Y1
...∀Yn

ϕ be the universal closure of a quantifier-free formula ϕ, and let ω be a Herbrand
structure. We find that ∀Y1 ...∀Ynϕ is true in ω if all ground instances in ϕ̄ are true in ω. Hence,
the quantifiers ∀Y1 ...∀Yn tell us how to aggregate the propositional truth values of the ground
instances in ϕ̄ with respect to ω to assign a truth value to the formula ∀Y1

...∀Yn
ϕ. A Markov logic

network of Richardson and Domingos (46) now refines this aggregation procedure by introducing
uncertainty. In particular, they replace these quantifiers with a real weight that indicates a degree
of certainty.

Definition 2.2.18 (Markov Logic Network). A Markov logic network Φ is a finite set of
weighted constraints (w, ϕ), where w ∈ R ∪ {∞} represents the weight of a quantifier-free
formula ϕ. For a ground substitution γ : {Xj}j∈N → C, we define the corresponding ground
instance as (w, ϕγ). Finally, the grounding Φ̄ of the Markov logic network Φ consists of the
ground instances of the weighted constraints in Φ. The grounding of a Markov logic network
forms a LogLinear model in the propositional alphabet P(A), which consists of all the ground
atoms of the alphabet A. Consequently, the Markov logic network Φ induces a distribution π on
P(A)-structures ω, defined by

π(ω) := πΦ(ω) := πΦ̄(ω).

In particular, we first assign to every Herbrand structure ω the weight

w(ω) := exp

∑

(w,ϕ)∈Φ, w ̸=∞
n number of ground instances ψ∈ϕ̄

such that ω|=ψ

n · w

 (2.7)

whenever ω |= ϕ̄ for all hard constraints (∞, ϕ) ∈ Φ and w(ω) = 0 otherwise. Next, we define a
normalizing constant

w(⊤) :=
∑

ω Herbrand structure

w(ω)

and assign to each Herbrand structure the probability

π(ω) :=
w(ω)

w(⊤)
. (2.8)

Remark 2.2.11. Given a Herbrand structure ω, the weights w of the quantifier-free formulas ϕ
in a Markov logic network Φ tell us that we aggregate the truth values of the ground instances
in ϕ̄ according to Equations (2.7) and (2.8). In this sense, these weights generalize the quantifiers
in a universally closed formula.

As for LogLinear models in Section 2.2.2, there is no intuitive description for weighted con-
straints (w, ϕ) with a real weight w ∈ R in a Markov logic network Φ. However, if the weight w =∞,
all ground instances of ϕ are necessarily satisfied. In the context of first-order logic, this is equiv-
alent to asserting the universal closure ∀Y1 ...∀Ynϕ of the formula ϕ.

28 2. Preliminaries

Example 2.2.24. Consider two friends, Jakob and Kilian, denoted as jakob and kilian, who
regularly meet in a pub. Furthermore, we denote by smokes(jakob) and smokes(kilian) the
events that Jakob and Kilian smoke, respectively. We model this situation with the alphabet A,
which consists of the constants C = {jakob, kilian} and the predicate smokes with arity one.
Assuming a positive correlation between Jakob and Kilian smoking could result in the Markov
logic network Φ, which is defined by the weighted constraint:

(ln(2), smokes(X) ∧ smokes(Y)).

The grounding Φ̄ of Φ is then given by the following weighted constraints.

(ln(2), smokes(kilian)) (ln(2), smokes(kilian) ∧ smokes(jakob))
(ln(2), smokes(jakob)) (ln(2), smokes(jakob) ∧ smokes(kilian))

This is a LogLinear model in the propositional alphabetP(A) := {smokes(jakob), smokes(kilian)}.
Hence, we have to consider the four P(A)-structures with the following weights.

ω1 := ∅ w(ω1) := 1

ω2 := {smokes(jakob)} w(ω2) := 2

ω3 := {smokes(kilian)} w(ω3) := 2

ω4 := {smokes(jakob), smokes(kilian)} w(ω4) = 16.

Overall, we find Jakob and Kilian smoking with probability

π(smokes(jakob)) = π(smokes(kilian)) =
2 + 16

21
=

18

21
.

Example 2.2.25. In the alphabet of Example 2.2.24, we can also consider the Markov logic
network, consisting of the constraint (∞,¬smokes(X)), which means that nobody, i.e. neither
Jakob nor Kilian is smoking.

2.2.4 Logic Programs and Probabilistic Logic Programs

As Decartes suggested, it is natural to express causal relationships in rules (32). Hence, it seems
natural to model causal reasoning with logic programs, which themselves consist of such rules.
Here, we introduce three well-established semantics for logic programs: the supported model
semantics (25), the minimal (Herbrand) model semantics (59), as well as the stable model se-
mantics (27). Next, we recall the abductive point of view on logic programming (22). Extending
logic programs by degrees of certainty and proceeding as in the construction of Markov logic net-
works (46) leads to LPMLN programs (35). If, instead, we extend logic programs by independent
Boolean random variables, we obtain ProbLog programs (21; 26). Finally, logic programs with
annotated disjunctions (62) extend logic programming by probabilistic case distinctions. Before
addressing general (probabilistic) logic programming, we investigate the propositional case.

Propositional Logic Programming

Logic programs consist of rules, also known as clauses. Fix a propositional alphabet P to define
these clauses; that is, the fragment of propositional logic in which we are interested.

Definition 2.2.19 (Clause). A (normal) clause C is a formula of the form

(h← (b1 ∧ (b2 ∧ (... ∧ bn))...)),

which we also denote as

h← b1 ∧ ... ∧ bn, h← b1, ..., bn or head(C)← body(C),

2.2 Statistical Relational Artificial Intelligence 29

Here, head(C) := h ∈ P is an atom, referred to as the head of C and body(C) := {b1, ..., bn} is
a finite set of literals, known as the body of C. If body(C) = ∅ is empty, we simply denote C
by h and call C a fact. Furthermore, we say that C is positive if body(C) ⊆ P, i.e., it does not
contain any negative literals.

Example 2.2.26. Recall the situation of Example 2.2.6, where we consider a road that passes
along a field with a sprinkler in it. The sprinkler is activated, denoted sprinkler by a weather
sensor whenever it is not cloudy, denoted ¬cloudy. In addition, the road pavement is wet, de-
noted wet, either when the sprinkler is on or when it rains, denoted rain. Lastly, when the road
is wet, it becomes slippery, denoted slippery. In the propositional alphabet

P := {cloudy, sprinkler, rain, wet, slippery}

we can build the following clauses.

C1 := sprinkler ← ¬cloudy
C2 := wet← rain, sprinkler

C3 := cloudy

We observe that C3 is a fact. Further, C2 and C3 are positive clauses, while C1 is not a positive
clause.

We proceed and construct programs from these clauses.

Definition 2.2.20 (Logic Program, Dependence Graph). A logic program P is a finite set of
clauses. We call the program P positive if it consists only of positive clauses. The dependence
graph graph(P) of P is the directed graph on the alphabet P given by drawing an arrow p→ q
if and only if there exists a clause C ∈ P with head(C) = q and body(C) ∩ {p,¬p} ≠ ∅. A cycle
is a finite alternating sequence of nodes and arrows of the form q → p1 → p2 → ... → pn → q
that ends and starts with the same node q. Finally, the program P is acyclic if its dependence
graph graph(P) has no cycle.

Example 2.2.27. From the alphabet in Example 2.2.26, we can build the following positive
program P1.

rain← cloudy

wet← rain wet← sprinkler

slippery ← wet

Furthermore, by incorporating the clause sprinkler ← ¬cloudy intoP1, we obtain the programP2,
which is no longer positive. We note that P2 is designed to model the scenario described in
Example 2.2.26. Lastly, we obtain the dependence graph graph(P2) of the program P2 below.

sprinkler

cloudy rain wet slippery

Hence, we conclude that P2 is an acyclic program

In logic programming, we consider a proposition p to be true only if the program P forces p
to be true. Otherwise, according to the principle of default negation, the proposition p is
considered false. In particular, a negative literal ¬p is true if there is no reason for the proposition
p to hold. This reflects that databases such as timetables usually state positive statements like
departures of trains and not when nothing is departing.

30 2. Preliminaries

Example 2.2.28. Recall the program P2 of Example 2.2.27. As there is no clause with the
head cloudy, we conclude that cloudy cannot be enforced. Applying default negation, we find
that cloudy is false, i.e. ¬cloudy is true. Hence, we immediately obtain that sprinkler, wet and
slippery need to be true. However, since the clause rain ← cloudy is not applicable if cloudy
is false, default negation yields that rain is false. In summary, the program P2 should have the
unique model ω := {sprinkler, wet, slippery}.

Subsequently, we recall three approaches to describe this intended behavior: the supported
model semantics (25), minimal model semantics (59), and stable model semantics (27).

The Supported Model Semantics of Acyclic Logic Programs

In the case of an acyclic program P, Clark (16) observes that P can be translated to equivalent
propositional formulas, stating that a valid proposition in a model ω needs to have a reason, i.e.,
a support in ω.

Definition 2.2.21 (Clark Completion, Supported Model Semantics for Logic Programs). Let P
be a logic program. The Clark completion of P is defined to be the set of formulas

comp(P) :=

p↔
∨
C∈P

head(C)=p

∧
body(C)

p∈P

.

Further, a model of the Clark completion ω |= comp(P) is said to be a supported model of P.

Example 2.2.29. The Clark completion of the program P2 in Example 2.2.27

rain← cloudy

sprinkler ← ¬cloudy
wet← rain wet← sprinkler

slippery ← wet

is given by

cloudy ↔ ⊥
rain↔ cloudy

sprinkler ↔ ¬cloudy
wet↔ rain ∨ sprinkler
slippery ↔ wet

As in Example 2.2.28, the program P2 has the supported model ω := {sprinkler, wet, slippery}.

Although the supported model semantics is formally well-defined for general propositional
logic programs, i.e., it associates a unique (possibly empty) set of models to each program P, it
is only guaranteed to represent the desired behavior of acyclic logic programs. In particular, the
supported model semantics could yield counterintuitive results for cyclic programs.

Example 2.2.30. Assume h1 and h2 are two neighboring houses. In addition, let us denote
by fire(hi) the event of a fire in the house hi, i = 1, 2. It makes sense to assume that a fire in the
house h1 leads to a fire in the house h2 and vice versa. So far, this situation can be modeled with
the following program P.

fire(h2)← fire(h1) fire(h1)← fire(h2)

Note that P has two supported models ω1 := ∅ and ω2 := {fire(h2), fire(h1)}. However, since
we do not state a fact fire(h1) or fire(h2), we cannot enforce fire(hi), i = 1, 2 based on the
program P. Hence, ω1 = ∅ should be the only model of P. This also reflects our intuition that
houses do not spontaneously burn, just because they would potentially affect each other.

2.2 Statistical Relational Artificial Intelligence 31

The Minimal Model Semantics of Positive Logic Program

Recall that we identify P-structures ω ⊆ P with the set of all propositions p ∈ P satisfied in ω.
Van Emden and Kowalski (59) propose the minimal model semantics for positive programs.

Definition 2.2.22 (Minimal Model Semantics of Logic Programs). A minimal model of a logic
program P is an inclusion-minimal model ω of P, where we consider P as a set of propositional
formulas.

The immediate consequence operator allows us to compute minimal models of positive pro-
grams.

Definition 2.2.23 (Immediate Consequence Operator). Let P be a logic program. The im-
mediate consequence operator T := TP : P(P) → P(P) is defined by assigning to each
structure ω ⊆ P the structure

T (ω) := {head(C) : C ∈ P, ω |= body(C)}.

Example 2.2.31. Recall the positive program P1 of Example 2.2.27

rain← cloudy

wet← rain wet← sprinkler

slippery ← wet

and denote by T its immediate consequence operator. We observe that T ({cloudy}) = {rain}.
Lemma 2.2.1 (van Emden, Kowalski (59)). Let P be a positive logic program. We recursively
define the ascending sequence of structures (ωi)i∈N by

ω0 = ∅ and ωi+1 := T (ωi),

where T denotes the immediate consequence operator. Since the alphabet P is finite, there exists
a structure ω and a natural number n ∈ N such that ω = ωi for all i ≥ n. In this case, ω is the
unique minimal model of the program P. □

Example 2.2.32. Consider the program P1 in Example 2.2.31. According to Lemma 2.2.1, the
program P1 ∪ {cloudy} has the minimal model ω := {cloudy, rain, wet, slippery}. As desired, we
see that ω1 := ∅ is the unique minimal of the program P in Example 2.2.30.

P : fire(h2)← fire(h1) fire(h1)← fire(h2)

Again, the minimal model semantics is formally well-defined for general propositional logic
programs, i.e. it associates a unique (possibly empty) set of models to each program P. However,
it is only guaranteed to represent the desired behavior for positive logic programs. Specifically, as
the following example from Gelfond and Lifschitz (27) demonstrates, the minimal model semantics
could yield undesired results when considering clauses with negation in their body.

Example 2.2.33. Fix the alphabet P := {p(1, 2), p(2, 1), q(1), q(2)} and consider the following
logic program P.

p(1, 2)

q(1)← p(1, 2),¬q(2)
q(2)← p(2, 1),¬q(1)

As there is no clause with head p(2, 1), we intuitively assume by default negation that p(2, 1) is
false. Therefore, the clause q(2)← p(2, 1),¬q(1) is not applicable and ¬q(2) holds with the same
argument. Hence, the clause q(1)← p(1, 2),¬q(2) enforces q(1) to be true. We conclude that the
program P should have the unique model ω1 := {q(1), p(1, 2)}. However, the program P has two
minimal models ω1 and ω2 := {q(2), p(1, 2)}.

32 2. Preliminaries

The Stable Model Semantics of General Logic Programs

Finally, Gelfond and Lifschitz (27) propose the stable model semantics for general logic programs.
In this thesis, we adopt the viewpoint that the stable model semantics formally defines the desired
notion of model for general logic programs.

Definition 2.2.24 (Stable Model Semantics of Logic Programs). Let P be a logic program.
Firstly, for a structure ω ⊆ P, we construct the reduct given by the positive program

Pω := {head(C)← body(C) ∩P : C ∈ P such that p ̸∈ ω whenever ¬p ∈ body(C) \P} .

The reduct Pω results from the program P by first erasing all clauses C ∈ P mentioning a negative
body literal ¬p ∈ body(C) with p ∈ ω and by then deleting all negative literals from the remaining
clauses. Further, a stable model ω of P is a model ω of P considered as a set of propositional
formulas, which is also the unique minimal model of the reduct Pω. Finally, a program P is called
consistent if it has at least one stable model.

Example 2.2.34. As desired, the structure ω := {sprinkler, wet, slippery} is the unique stable
model of the program P2 in Example 2.2.27.

rain← cloudy

sprinkler ← ¬cloudy
wet← rain wet← sprinkler

slippery ← wet

For the positive program in Example 2.2.30, we obtain the unique stable model ω1 := ∅.

fire(h2)← fire(h1) fire(h1)← fire(h2)

Finally, ω1 := {q(1), p(1, 2)} is the unique stable model of the program in Example 2.2.33.

p(1, 2)

q(1)← p(1, 2),¬q(2)
q(2)← p(2, 1),¬q(1)

Assume that we want to decide whether a query q is true or false with respect to the knowledge
represented by a logic program P. This is feasible only when the program P has a unique stable
model. Now, we present a broad class of programs with unique stable models.

Definition 2.2.25 (Signed Dependence Graph and Stratified Programs). Let P be a logic pro-

gram. An edge p
−→ q in the dependence graph graph(P) is negative if there is a clause C ∈ P with

head(C) = q and ¬p ∈ body(C). If there is a clause C ∈ P with head(C) = q and p ∈ body(C),

the edge p
+→ q is positive. Note that an edge can be both negative and positive simultane-

ously. If we add these edge labels to the dependence graph, we obtain the signed dependence
graph graph±(P). Finally, the program P is stratified if its signed dependence graph graph±(P)
does not contain a cycle with a negative edge.

Example 2.2.35. Recall the program P2 of Example 2.2.27 below.

rain← cloudy

sprinkler ← ¬cloudy
wet← rain wet← sprinkler

slippery ← wet

2.2 Statistical Relational Artificial Intelligence 33

We obtain the following signed dependence graph graph±(P2).

sprinkler

cloudy rain wet slippery

+−

+ + +

Hence, the program P2 is acyclic and stratified.
The program P of Example 2.2.33

p(1, 2)

q(1)← p(1, 2),¬q(2)
q(2)← p(2, 1),¬q(1)

has the signed dependence graph graph±(P) below.

p(1, 2) p(2, 1)

q(1) q(2)

+ +−

−

Hence, the program P is not stratified as we find the cycle q(1)
−→ q(2)

−→ q(1).
Finally, consider the following program P′.

p(1, 2)

q(1)← ¬p(1, 2), q(2)
q(2)← ¬p(2, 1), q(1)

with the dependence graph

p(1, 2) p(2, 1)

q(1) q(2)

− −+

+

As the cycle q(1)
+→ q(2)

+→ q(1) contains only positive edges, the program P′ is stratified. It has
the unique stable model {p(1, 2)}.

As desired, every stratified program has a unique stable model.

Theorem 2.2.2 (Gelfond and Lifschitz (27)). Every stratified program has a unique stable model. □

Finally, we find that every stable model is a model of the Clark completion.

Theorem 2.2.3 (Gelfond and Lifschitz (27)). Every stable model of a logic program is also a
supported model □.

Corollary 2.2.4. If a consistent logic program P has a unique supported model ω, we find that ω is
also the unique stable model of P. This is the case, for instance, when P is an acyclic program. □

However, unique supported models or minimal models are not necessarily stable.

34 2. Preliminaries

Example 2.2.36. Consider the program P that is given by

p← ¬p p← q q ← q.

Note that P has the unique supported model {p, q}, which is not stable. Observe that this does
not contradict Corollary 2.2.4 as the program P is not consistent.

Non-Ground Logic Programming

Let A be a relational alphabet. In this case, a (normal) clause is a quantifier-free formula

(h← (b1 ∧ (b2 ∧ (... ∧ bn)...))

that we denoted by h← b1 ∧ ...∧ bn, h← b1, ..., bn or head(C)← body(C). Here, head(C) := h is
an atom and body(C) := {b1, ..., bn} is a finite set of literals. Furthermore, a logic program P
again is a finite set of clauses and the grounding P̄ of P is the set of all ground instances of the
clauses in P. As the alphabet A consists of finitely many constants and predicates, the grounding P̄
contains only finitely many clauses that do not mention any variables. Finally, a minimal, stable
or supported model ω of P is a minimal, stable or supported model of the grounding P̄, treated
as a propositional program in the ground atoms of the alphabet A.

Example 2.2.37. Consider the alphabet A := (P, C) consisting of the predicates

P := {smokes, spontaneously smokes}

together with the constants
C := {jakob, kilian}.

Each predicate has arity one, and the constants denote two friends, Jakob and Kilian, respec-
tively. Furthermore, spontaneously smokes(jakob) and spontaneously smokes(kilian) indicate
that Jakob and Kilian start to smoke, respectively. By smokes(jakob) and smokes(kilian), we
mean that Jakob and Kilian are smoking, respectively. In the alphabet A, we can build the
following program P:

smokes(X)← spontaneously smokes(X)

smokes(Y)← smokes(X)

spontaneously smokes(kilian)

Hence, everyone who smokes spontaneously actually smokes. If one friend is smoking, so is the
other friend. And Kilian starts smoking spontaneously. We obtain the grounding P̄ below:

smokes(kilian)← spontaneously smokes(kilian)

smokes(jakob)← spontaneously smokes(jakob)

smokes(kilian)← smokes(kilian)

smokes(jakob)← smokes(kilian)

smokes(jakob)← smokes(jakob)

smokes(kilian)← smokes(jakob)

spontaneously smokes(kilian)

Hence, we find that P has the unique minimal and stable model:

ω := {spontaneously smokes(kilian), smokes(kilian), smokes(jakob)}.

Finally, note that ω∪{spontaneously smokes(jakob)} would yield another supported model of P.

2.2 Statistical Relational Artificial Intelligence 35

Propositional Abductive Logic Programming

Toward reasoning on Aristotelian knowledge, we introduce the abductive perspective on logic
programming (22). The objective of the resulting abductive logic programs is to offer an expla-
nation for a given set of observations. Once more, we start with the propositional case and fix a
propositional alphabet P.

Definition 2.2.26 (Abductive Logic Program). An integrity constraint IC is an expression
of the form ⊥ ← b1 ∧ ... ∧ bn also written ⊥ ← body(IC), where body(IC) is a finite set of
literals. Further, an abductive logic program is a triplet P := (P,A, IC) consisting of a logic
program P, a finite set of integrity constraints IC and a set of abducibles A ⊆ P such that no
abducible u ∈ A is the head of a clause in P. Finally, we say that P is positive if the underlying
logic program P is.

In the context of databases, integrity constraints express a sanity check on data (15, Chapter 9).
In this thesis, we use them to represent our observations, i.e., they ensure that the Aristotelian
knowledge provided by the causal relations encoded in the program P and the explanations in A
is also consistent with the factual knowledge that we observe.

Example 2.2.38. Recall the situation of Example 2.2.6, where we consider a road that passes
along a field with a sprinkler in it. The sprinkler is activated, denoted sprinkler by a weather
sensor whenever it is not cloudy, denoted ¬cloudy. In addition, the road pavement is wet, de-
noted wet, either when the sprinkler is on or when it rains, denoted rain. Lastly, when the road
is wet, it becomes slippery, denoted slippery. Consider the program P2 of Example 2.2.27

rain← cloudy

sprinkler ← ¬cloudy
wet← rain wet← sprinkler

slippery ← wet

and let cloudy be the only abducible, i.e. we find A := {cloudy}. We may also observe rainy
weather, giving the integrity constraints IC := {⊥ ← ¬rain}. In this way, we obtain an abductive
logic program P := (P2,A, IC).

Further, we recall the various semantics of an abductive logic program.

Definition 2.2.27 (Model of an Abductive Logic Program). A structure ω ⊆ P is a minimal,
stable, or supported model of the abductive logic program P := (P,A, IC) if ω satisfies the
integrity constraints IC, i.e., ω |= IC (meaning ω ̸|= body(IC)) for all IC ∈ IC and if ω is a
minimal, stable, or supported model of the program P ∪ (ω ∩A). We then call the set ϵ := ω ∩A
the explanation of ω.

Example 2.2.39. In the situation of Example 2.2.38, the abductive logic program P ′ := (P2,A, ∅)
has two stable models

ω1 := {cloudy, rain,wet, slippery}
ω2 := {sprinkler, wet, slippery}

with explanations ϵ1 := {cloudy} and ϵ2 := ∅, respectively. Since only ω1 is consistent with the
observation of rainy weather expressed by the integrity constraint ⊥ ← ¬rain, we conclude that ω1

is the only stable model of the abductive logic program P in Example 2.2.38.

Non-Ground Abductive Logic Programming

Let A be a relational alphabet. In this case, an integrity constraint IC is a quantifier-free
formula ⊥ ← b1 ∧ ... ∧ bn for literals b1,...,bn. Now an abductive logic program P := (P,Ab, IC)

36 2. Preliminaries

is a tuple consisting of a logic program P, a set of atoms Ab, called abducibles, and a set of
integrity constraints IC such that the grounding P̄ := (P̄, Āb, ¯IC) is an abductive logic program
in the propositional alphabet P(A) given by the ground atoms of A. A supported, minimal or
stable model ω of P with explanation ϵ then is a supported, minimal or stable model ω of the
grounding P̄ with explanation ϵ.

Example 2.2.40. Recall the alphabet A := (P, C) of Example 2.2.37, where

P := {smokes, spontaneously smokes} and C := {jakob, kilian}.

Each predicate has arity one, and the constants denote two friends, Jakob and Kilian, respec-
tively. Furthermore, spontaneously smokes(jakob) and spontaneously smokes(kilian) indicate
that Jakob and Kilian start to smoke, respectively. By smokes(jakob) and smokes(kilian), we
mean that Jakob and Kilian are smoking, respectively.

We can now construct the abductive logic program P := (P,Ab, IC), consisting of the logic
program P given by

smokes(X)← spontanously smokes(X) smokes(Y)← smokes(X)

the abducibles Ab := {spontanously smokes(X)} and the constraints

IC := {⊥ ← spontanously smokes(jakob)}.

In this case, we find that P has the stable models

ω1 := {spontanously smokes(kilian), smokes(kilian), smokes(jakob)}
ω2 := ∅

with explanations ϵ1 := {spontanously smokes(kilian)} and ϵ2 := ∅, respectively.

Probabilistic Logic Programming

To conclude, we delve into the realm of probabilistic extensions of logic programming provided by
the distribution semantics of Sato (55) and Poole (43). Here, we fix a propositional alphabet P
and introduce the various concepts in probabilistic logic programming for the propositional case.

Generally, in all of these concepts, one chooses clauses in a given logic program P at random,
yielding a distribution on the resulting programs P′ ⊆ P. In addition, we apply the P-log se-
mantics of Baral et al. (6) and extend this distribution on logic programs to a distribution on
the corresponding stable models (27). The presented languages now differ in how they state the
random choice of clauses in the program P.

Logic Programs with Annotated Disjunctions

Vennekens et al. (60) introduce a causal semantics for logic programs with annotated disjunctions
that also enables counterfactual reasoning (61). We compare their causal reasoning with our
approach in Section 3.4.4. Generally, in logic programs with annotated disjunctions, Vennekens
and Verbaeten (62) express random choices of clauses with disjunctions in the head, where every
disjunct is labeled with a probability.

Example 2.2.41. Consider a road that passes through a field with a sprinkler in it. Assume it is
cloudy, denoted cloudy, with probability 0.5. Further, if it is cloudy, it rains, denoted rain, with
probability 0.6. The sprinkler is then switched on, denoted sprinkler, by a weather sensor with
probability 0.1 if it is cloudy and it does not rain, denoted ¬rain, and with probability 0.8 if it is
sunny. The road pavement is wet, denoted wet , with probability 0.7 if it rains and probability 0.3

2.2 Statistical Relational Artificial Intelligence 37

if the sprinkler is on. Finally, a wet road is slippery, denoted slippery, with a probability of 0.9.
We model this situation in the following logic program with annotated disjunctions P:

C1 := cloudy : 0.5

C2 := rain : 0.6; sprinkler : 0.1← cloudy

C3 := sprinkler : 0.8← ¬cloudy
C4 := wet : 0.7← rain

C5 := wet : 0.3← sprinkler

C6 := slippery : 0.9← wet

Here, clause C2, for instance, means that we choose the clause rain← cloudy with probability 0.6
and the clause sprinkler ← cloudy with probability 0.1.

Recall the syntax of logic programs with annotated disjunctions.

Definition 2.2.28 (Logic Program with Annotated Disjunction). We call an expression

C := h1 : π1; ...;hl : πl ← b1, ..., bn

a clause with annotated disjunctions or LPAD clause if the assertions below are satisfied.

i) We have that head(C) := (h1, ..., hl) is a tuple of propositions called the head of C. We
write h ∈ (h1, ..., hl) if h = hi for 1 ≤ i ≤ l. Further, we write l(C) := l and hi(C) := hi
for 1 ≤ i ≤ l.

ii) We have that body(C) := {b1, ..., bn} is a finite set of literals called the body of C.

iii) For all 1 ≤ i ≤ l, the probability of the head atom hi is given by a number πi(C) := πi ∈ [0, 1],
such that

∑
i πi ≤ 1.

Informally, the clause C means that we independently choose the heads h1 or h2 or... or hl for
the clause hi ← b1, ..., bn with probability πi.

A logic program with annotated disjunctions or LPAD is then a finite set of LPAD
clauses P. A selection of an LPAD P is a function σ : P→ N ∪ {⊥} that assigns to each LPAD
clause C ∈ P a natural number 1 ≤ σ(C) ≤ l(C) or the symbol σ(C) :=⊥̸∈ N. Assuming that all
choices of heads are mutually independent, to each selection σ we associate the probability

π(σ) :=
∏
C∈P
σ(C)∈N

πσ(C)(C) ·
∏
C∈P

σ(C)=⊥

1−
l(C)∑
i=1

πi(C)

and the logic program

Pσ :=
{
hσ(C) ← body(C) : C ∈ P, σ(C) ̸=⊥

}
.

We call a selection σ consistent if the logic program Pσ is consistent, that is, Pσ has at least
one stable model. The event consistent(P) that the LPAD P is consistent is then given by the
set of all consistent selections, i.e.

consistent(P) := {σ consistent selection of the LPAD P}.

Using the principle of indifference in Law 3, we extend the probability distribution on the
selections σ, that is on the logic programs Pσ, to a distribution on the stable models ω of these
programs Pσ:

Let σ be a selection. If σ is not consistent, there is no stable model of Pσ and we conclude
that σ cannot be observed. Hence, we observe that the LPAD P is consistent, that is, we observe

38 2. Preliminaries

the event consistent(P). Assuming that Pσ has the stable models ω1(σ), ..., ωn(σ)(σ), n(σ) ∈ N
for every consistent selection σ, the P-log semantics assigns to every world ω the probability

π(ω) := πP(ω) := πP−logP (ω) :=
∑

σ consistent selection
1≤i≤n(σ)
ω=ωi(σ)

π(σ| consistent(P))

n(σ)
=

=
1

π(consistent(P))

∑
σ consistent selection

1≤i≤n(σ)
ω=ωi(σ)

π(σ)

n(σ)
.

Once again, to a formula ϕ we associate the probability

π(ϕ) := πP(ϕ) := πP−logP (ϕ) :=
∑

ω world
ω|=ϕ

π(ω).

Example 2.2.42. To enforce the proposition rain in Example 2.2.41, we need to choose the
clauses cloudy and rain← cloudy, that is, it is raining with probability

π(rain) := 0.5 · 0.6 = 0.3.

Lastly, let A be a relational alphabet. We call an expression of the form

C := h1 : π1; ...;hl : πl ← b1, ..., bn

an LPAD clause if the following assertions are satisfied:

i) We have that head(C) := (h1, ..., hl) is a tuple of atoms called the head of C.

ii) We have that body(C) := {b1, ..., bn} is a finite set of literals called the body of C.

iii) For all 1 ≤ i ≤ l the probability of the head atom hi is given by a number πi(C) := πi ∈ [0, 1],
such that

∑
i πi ≤ 1.

For a ground substitution γ the corresponding ground instance is defined by

Cγ := hγ1 : π1; ...;h
γ
l : πl ← bγ1 , ..., b

γ
n.

Again, an LPAD P is a finite set of LPAD clauses and its grounding P̄ is the set of the
corresponding ground instances, which is an LPAD in the propositional alphabet P(A) of all
ground atoms of A. Hence, we define the probability of a Herbrand structure ω by grounding and
set π(ω) := πP(ω) := πP̄(ω).

ProbLog – a Probabilistic Prolog

In this thesis, we mainly formulate our causal reasoning in the language of ProbLog. De Raedt et
al. (21) and Fierens et al. (26) introduce ProbLog as the simplest probabilistic extension of Prolog.
The main idea here is that it is not necessary to describe the choice of arbitrary clauses in the
distribution semantics. Instead, it is sufficient if one chooses facts at random.

Example 2.2.43. Let us drop the mutual exclusivity of rain and sprinkler in Example 2.2.41.
Hence, assume that it is cloudy, denoted cloudy, with probability 0.5. Further, if it is cloudy, it
rains, denoted rain, with probability 0.6. The sprinkler is then switched on, denoted sprinkler,
by a weather sensor with probability 0.1 if it is cloudy and probability 0.7 if it is sunny. The

2.2 Statistical Relational Artificial Intelligence 39

pavement of the road is wet, denoted wet, with probability 0.8 if it rains and probability 0.3 if
the sprinkler is on. Finally, a wet road is slippery, denoted slippery , with a probability of 0.9. We
model this situation in the following ProbLog program P:

Random facts Facts(P):

0.5 :: u1 0.6 :: u2 0.7 :: u3 0.1 :: u4 0.8 :: u5 0.3 :: u6 0.9 :: u7

Underlying Logic Program LP(P) :

cloudy ← u1

rain← cloudy, u2

sprinkler ← ¬cloudy, u3 sprinkler ← cloudy, u4

wet← rain, u5 wet← sprinkler, u6

slippery ← wet, u7

Here, the random fact 0.6 :: u2 indicates that we independently choose the fact u2 to be true with
probability 0.6. These random facts then serve as switches in an underlying logic program, that
is, in our case the choice of u2 means that we choose the clause rain← cloudy with a probability
of 0.6.

Let us now formally introduce the syntax of ProbLog programs.

Definition 2.2.29 (Random Fact, ProbLog Program). A random fact RF is an expression

π(RF) :: u(RF),

where u(RF) ̸∈ P is the error term of RF and where π(RF) ∈ [0, 1] is the probability of u(RF).
It indicates that we choose u(RF) independently to be true with probability π(RF).

A ProbLog program P consists of a finite set of random facts Facts(P) and an underlying
logic program LP(P) in the alphabet P∪ {u(RF) : RF ∈ Facts(P)} such that no error term is
the head of a clause in LP(P).

Remark 2.2.12. Let P be a ProbLog program and denote by A the set of error terms. In this
case, we find that P := (LP(P),A, ∅) is an abductive logic program without integrity constraints.
This observation inspires our causal interpretation of ProbLog in Section 3.4.3.

From the independence of the error terms and the principle of indifference in Law 3 we obtain
the P-log semantics of Baral et al. (6).

Definition 2.2.30 (P-log Semantics of ProbLog Programs). Let P be a ProbLog program. A
choice ϵ is a subset of error terms. Interpreting error terms u as mutually independent Boolean
random variables that hold with the probabilities π in the random facts π :: u, we assign to each
choice ϵ the probability

π(ϵ) :=
∏

RF∈Facts(P)
u(RF)∈ϵ

π(RF) ·
∏

RF∈Facts(P)
u(RF)̸∈ϵ

(1− π(RF)).

We call a choice ϵ consistent if the logic program LP(P) ∪ ϵ is consistent, that is, LP(P) ∪ ϵ has
at least one stable model. The event consistent(P) of the ProbLog program P being consistent
is then given by the set of all consistent choices, i.e.

consistent(P) := {ϵ consistent choice of the ProbLog program P}.

Using the principle of indifference in Law 3, we extend the probability distribution on the
choices ϵ, that is on the logic programs LP(P) ∪ ϵ, to a distribution on the stable models ω of
these logic programs LP(P) ∪ ϵ:

40 2. Preliminaries

Let ϵ be a choice. If ϵ is not consistent, there is no stable model of LP(P)∪ ϵ and we conclude
that ϵ cannot be observed. Hence, we observe that the ProbLog program P is consistent, that
is, we observe the event consistent(P). Assume that ϵ is a consistent choice and that the logic
program LP(P)∪ ϵ has n ∈ N stable models ω1, ..., ωn. The principle of indifference in Law 3 then
yields the P-log semantics

π(ωi) := πP(ωi) := πP−logP (ωi) :=
π(ϵ| consistent(P))

n
=

=
π(ϵ)

n · π(consistent(P))
for all 1 ≤ i ≤ n.

Setting π(ω) := πP(ω) := πP−logP (ω) := 0 for all structures ω that are not a stable model
of LP(P) ∪ ϵ for a choice ϵ, we obtain a probability distribution on the P-structures. Finally, we
define the probability of a formula ϕ to be true by

π(ϕ) = πP−logP (ϕ) :=
∑

ω structure
ω|=ϕ

πP(ω).

Remark 2.2.13. We use the letter ϵ to denote the choices of a ProbLog program since they also
denote explanations of the associated abductive logic program in Remark 2.2.12.

Example 2.2.44. Recall the ProbLog program of Example 2.2.43.

Random facts Facts(P):

0.5 :: u1 0.6 :: u2 0.7 :: u3 0.1 :: u4 0.8 :: u5 0.3 :: u6 0.9 :: u7

Underlying Logic Program LP(P) :

cloudy ← u1

rain← cloudy, u2

sprinkler ← ¬cloudy, u3 sprinkler ← cloudy, u4

wet← rain, u5 wet← sprinkler, u6

slippery ← wet, u7

It rains only if we choose u1 and u2 to be true, i.e., we find rainy weather with a probability of

π(rain) := π(u1) · π(u2) = 0.5 · 0.6 = 0.3.

Example 2.2.45. Assume that Kailin and Felix drink tea and the bell rings. If Kailin or Felix
hear the bell, one of them stands up to open the door, while the other remains seated. This can
be modeled with the following ProbLog program P.

Random facts Facts(P):

0.5 :: u1 0.5 :: u2

Underlying Logic Program LP(P) :

felix← ¬kailin, u1
kailin← ¬felix, u2

In this case, we obtain the following choices:

ϵ1 := ∅ ϵ2 := {u1}
ϵ3 := {u2} ϵ4 := {u1, u2}

2.2 Statistical Relational Artificial Intelligence 41

All choices ϵi have the same probability π(ϵi) = 1/4. The program LP(P) ∪ ϵ1 has the stable
model ω1 := ∅, the program LP(P) ∪ ϵ2 has the stable model ω2 := {u1, felix}, and the pro-
gram LP(P) ∪ ϵ3 has the stable model ω3 := {u2, kailin}. Finally, the program LP(P)∪ϵ4 has sta-
ble models ω4 := {u1, u2, kailin} and ω5 := {u1, u2, felix}. We find π(ω1) = π(ω2) = π(ω3) = 1/4.
To assign a probability to ω4 and ω5, we apply the principle of indifference; since we do not have
information distinguishing these worlds, we conclude that they are equally likely, i.e., we ob-
tain π(ω4) = π(ω5) = 1/8. In this way, we find that Felix opens the door with a probability
of π(felix) = 3/8.

Let us add the clause felix← ¬felix, which models the constraint that Felix opens the door.
Hence, we consider the following ProbLog program P′:

Random facts Facts(P′):

0.5 :: u1 0.5 :: u2

Underlying Logic Program LP(P′) :

felix← ¬kailin, u1
kailin← ¬felix, u2
felix← ¬felix

The programs LP(P′) ∪ ϵ1 and LP(P′) ∪ ϵ3 have no stable model, i.e., the choices ϵ1 and ϵ3
are not consistent. The program LP(P′) ∪ ϵ2 has the stable model ω2 = {u1, felix} and the
program LP(P′) ∪ ϵ4 has the stable model ω5 = {u1, u2, felix}, i.e., the choices ϵ2 and ϵ4 are
consistent and the event of the ProbLog program P′ being consistent is given by

consistent(P′) = {ϵ2, ϵ4}.

If we naively set π(ω2) = π(ω5) = 1/4, the probability mass would not sum up to one, i.e. we nor-
malize and divide by π(consistent(P′)) = 1/2, which is the same as conditioning on consistent(P′).
In other words, when extending the distribution of choices ϵ1 − ϵ4 to the stable models ω2 and ω5

of the programs LP(P′) ∪ ϵ1 − LP(P′) ∪ ϵ4, we can observe consistent choices. In summary, we
find π(ω2) = π(ω5) = 1/2 and Felix opens the door with probability π(felix) = 1.

A logic program with annotated disjunctionsP can be translated into a ProbLog program Prob(P)
with the same P-log semantics.

Definition 2.2.31 (De Raedt et al. (20)). Let P be an LPAD in P and choose for every LPAD
clause C ∈ P and for every natural number 1 ≤ i ≤ l(C) distinct propositions hCi , ui(C) ̸∈ P. The
ProbLog transformation Prob(P) of the LPAD P is the ProbLog program that is given by the
logic program LP(Prob(P)), which consists of the clauses

hCi ← body(C) ∪ {¬hCj |1 ≤ j < i} ∪ {ui(C)}
hi ← hCi

for every LPAD clause C ∈ P and for every 1 ≤ i ≤ l(C) as well as the random facts

Facts(Prob(P)) :=

{
πi(C)

1−
∏

1≤j<i πj(C)
:: ui(C) | C ∈ P, 1 ≤ i ≤ l(C)

}
.

In fact, we obtain the following result.

Theorem 2.2.5 (De Raedt et al. (20)). Let P be an LPAD. In this case, for every selection σ of P,
we obtain a set of choices ϵ(σ) of the ProbLog program Prob(P). Here, ϵ ∈ ϵ(σ) whenever ui(C) ̸∈ ϵ
if σ(C) =⊥, or if i > σ(C) and ui(C) ∈ ϵ if σ(C) = i.

We observe that Pσ yields the same stable models as the logic programs LP(Prob(P)) ∪ ϵ for
every ϵ ∈ ϵ(σ), and that π(ϵ(σ)) = π(σ). Furthermore, the LPAD P and its ProbLog transforma-
tion Prob(P) yield the same probability for every world ω, i.e., πP(ω) = πProb(P)(ω). □

42 2. Preliminaries

Example 2.2.46. Recall the logic program with annotated disjunction P from Example 2.2.41.

cloudy : 0.5

rain : 0.6; sprinkler : 0.1← cloudy

sprinkler : 0.8← ¬cloudy
wet : 0.7← rain

wet : 0.3← sprinkler

slippery : 0.9← wet

The program P then gives rise to the following ProbLog transformation Prob(P).

Random facts:

0.5 :: u1(C1) 0.6 :: u1(C2) 0.25 :: u2(C2) 0.8 :: u1(C3) 0.7 :: u1(C4) 0.3 :: u1(C5) 0.9 :: u1(C6)

Underlying Logic Program:

cloudyC1 ← u1(C1) cloudy ← cloudyC1

rainC2 ← cloudy, u1(C2) rain← rainC2

sprinklerC2 ← cloudy,¬rainC2 , u2(C2) sprinkler ← sprinklerC2

sprinklerC3 ← ¬cloudy, u1(C3) sprinkler ← sprinklerC3

wetC4 ← rain, u1(C4) wet← wetC4

wetC5 ← sprinkler, u1(C5) wet← wetC5

slipperyC6 ← wet, u1(C6) slippery ← slipperyC6

Finally, each ProbLog program can be interpreted as an LPAD using the following mapping.

Definition 2.2.32 (Riguzzi (47, §2.4)). Let P be a ProbLog program. In this case, we de-
fine the LPAD transformation LPAD(P) of P to be the LPAD containing one clause of
the form u(RF) : π(RF) ← for every random fact π(RF) :: u(RF) in P and a clause of
the form head(C) : 1← body(C) for every clause C ∈ LP(P). Furthermore, each selection σ
of LPAD(P) with a non-zero probability corresponds to a unique choice ϵ(σ) such that u(RF) ∈ ϵ(σ)
if and only if σ(u(RF) : π(RF)←) ̸=⊥.

Once again, we observe that the LPAD transformation preserves the P-log semantics.

Theorem 2.2.6 (Riguzzi (47), §2.4). In Definition 2.2.32, we observe that LP(P) ∪ ϵ(σ) and
LPAD(P)σ produce the same stable models, and π(σ) = π(ϵ(σ)). Consequently, the programs P
and LPAD(P) assign the same probability to every world ω, i.e., πP(ω) = πLPAD(P)(ω). □

Example 2.2.47. Recall the ProbLog program of Example 2.2.43.

Random facts Facts(P):

0.5 :: u1 0.6 :: u2 0.7 :: u3 0.1 :: u4 0.8 :: u5 0.3 :: u6 0.9 :: u7

Underlying Logic Program LP(P) :

cloudy ← u1

rain← cloudy, u2

sprinkler ← ¬cloudy, u3 sprinkler ← cloudy, u4

wet← rain, u5 wet← sprinkler, u6

slippery ← wet, u7

2.2 Statistical Relational Artificial Intelligence 43

The LPAD transformation of the program P results in the following LPAD LPAD(P).

u1 : 0.5 u2 : 0.6 u3 : 0.8 u4 : 0.1 u5 : 0.7 u6 : 0.3 u7 : 0.9

cloudy : 1← u1

rain : 1← cloudy, u2

sprinkler : 1← ¬cloudy, u3
sprinkler : 1← cloudy, u4

wet : 1← rain, u5

wet : 1← sprinkler, u6

slippery : 1← wet, u7

Next, we introduce the operator (::)/2 to choose clauses in a logic program with a certain
probability. The resulting ProbLog clauses then refer to the subset of ProbLog programs P in
which each clause C ∈ LP(P) mentions a unique and distinct error term u(C).

Example 2.2.48. Recall the ProbLog program P from Example 2.2.43.

Random facts Facts(P):

0.5 :: u1 0.6 :: u2 0.7 :: u3 0.1 :: u4 0.8 :: u5 0.3 :: u6 0.9 :: u7

Underlying Logic Program LP(P) :

C1 := cloudy ← u1

C2 := rain← cloudy, u2

C3 := sprinkler ← ¬cloudy, u3
C4 := sprinkler ← cloudy, u4

C5 := wet← rain, u5

C6 := wet← sprinkler, u6

C7 := slippery ← wet, u7

We observe that each clause Ci in LP(P) mentions a unique error term ui. Hence, we independently
choose the clause Ci with the probability of random fact πi :: ui. We now denote the ProbLog
program P with the following ProbLog clauses.

0.5 :: cloudy

0.6 :: rain← cloudy

0.7 :: sprinkler ← ¬cloudy 0.1 :: sprinkler ← cloudy

0.8 :: wet← rain 0.3 :: wet← sprinkler

0.9 :: slippery ← wet

Here, the ProbLog clause 0.6 :: rain ← cloudy for example means that we choose the clause
rain← cloudy independently with probability 0.6.

Formally, these ProbLog clauses are defined as follows.

Definition 2.2.33 (ProbLog Clause). A ProbLog clause PC is an expression π(PC) :: C(PC),
where C(PC) is a normal clause and where π(PC) ∈ [0, 1] is a probability. A set of ProbLog
clauses P denotes the ProbLog program, consisting of the logic program

LP(P) := {head(C(PC))← body(C(PC)) ∪ {u(PC)}| PC ∈ P}

and the random facts
Facts(P) := {π(PC) :: u(PC)| PC ∈ P},

44 2. Preliminaries

where we introduce a distinct error term u(PC) ̸∈ P for every clause PC ∈ P. Each ProbLog
program P that can be represented in this way is said to be contained in the fragment of
ProbLog clauses. In this case, we define the dependence graph graph(P) of P to be the
directed graph on the alphabet P that is given by drawing an edge p → q if and only if there
exists a clause PC ∈ P with head(PC) = q and with {p,¬p} ∩ body(PC) ̸= ∅. Finally, we say
that P is acyclic if the graph graph(P) contains no cycle.

The ProbLog clause notation suggests that in a ProbLog program P within the fragment
of ProbLog clauses, the uncertainty can be interpreted as uncertainty about the clauses in the
logic program P′ := {C(PC)| PC ∈ P}. More precisely, each clause C(PC) ∈ P′ is chosen
independently with a probability of π(PC).

Finally, let A := (C,P) be a relational alphabet. In this case, a random fact is an expres-
sion π(RF) :: u(RF), where the error term u(RF) := p(t1, ..., tn) is an atom with underlying
predicate p ̸∈ P and where π(RF) ∈ [0, 1] is the probability of u(RF). For a ground substitu-
tion γ, we define RF γ := (π(RF) :: u(RF)γ) to be the corresponding ground instance. If Φ is
a set of random facts, we denote by Φ̄ the set of all ground instances RF γ where RF ∈ Φ.

Now, a ProbLog program P consists of a finite set of random facts Facts(P) and a logic pro-
gram LP(P) in the alphabet Ā := (C,P ∪ {p: p underlying predicate of u(RF), RF ∈ Facts(P)})
such that the grounding P̄ given by Facts(P) and LP(P) is a ProbLog program in the propo-
sitional alphabet P(A) of all ground atoms in A. In this case, the probability of a Herbrand
structure ω is also defined by grounding, i.e. π(ω) := πP(ω) := πP̄(ω).

Example 2.2.49. Reconsider the alphabet A := (P, C) in Example 2.2.37 with predicates

P := {smokes, spontaneously smokes}

and constants
C := {jakob, kilian}.

Each predicate has arity one, and the constants denote two friends, Jakob and Kilian, respec-
tively. Furthermore, spontaneously smokes(jakob) and spontaneously smokes(kilian) indicate
that Jakob and Kilian start to smoke, respectively. By smokes(jakob) and smokes(kilian), we
mean that Jakob and Kilian are smoking, respectively. Assume everyone starts spontaneously to
smoke with a probability of 0.5. This could result in the ProbLog program P below.

0.5 :: spontanously smokes(X)

smokes(X)← spontanously smokes(X)

smokes(Y)← smokes(X)

In this case, we find that Jakob is smoking with a probability of π(smokes(jakob)) := 3/4.

Furthermore, a ProbLog clause PC is an expression of the form π(PC) :: C(PC) for a normal
clause C(PC) and a probability π(PC) ∈ [0, 1]. For a ground substitution γ, the corresponding
ground instance is defined to be PCγ := π(PC) :: C(PC)γ . Finally, we identify a finite set of
ProbLog clauses P with the set P̄ of all ground instances PCγ of ProbLog clauses PC ∈ P, which
denotes a ProbLog program in the propositional alphabet P(A) of all ground atoms in A. Again,
the probability of a Herbrand structure ω is defined by grounding, i.e. π(ω) := πP(ω) := πP̄(ω).

Example 2.2.50. If we are unsure whether Jakob and Kilian influence each other to smoke in
the program P of Example 2.2.49, this could result in the following program.

0.5 :: spontanously smokes(X)

1 :: smokes(X)← spontanously smokes(X)

0.8 :: smokes(Y)← smokes(X)

In this case, we find that Jakob is smoking with a probability of π(smokes(jakob)) := 7/10.

2.2 Statistical Relational Artificial Intelligence 45

The Language LPMLN

Lee and Wang (35) introduce LPMLN programs to subsume widespread formalisms in statistical
relational artificial intelligence. We extend their formalism in Section 3.2 to a general framework
tailored to causal reasoning, which also encompasses widespread formalisms in statistical relational
artificial intelligence: Markov networks (46), logic programs with annotated disjunctions (62), and
ProbLog programs (21; 26).

Inspired by Richardson and Domingos’ approach to constructing LogLinear models (46), Lee
and Wang (35) extend logic programming by introducing degrees of certainty. This leads to
LPMLN programs, where LP is a shorthand for “logic program” and MLN is a shorthand for
“Markov logic network”.

Definition 2.2.34 (Weighted Rule, LPMLN Program). A weighted rule (w,C) is a tuple of
a normal clause C and a weight w ∈ R ∪ {∞}. An LPMLN program P then is a finite set
of weighted rules. In this case, we call LP(P) := {C : ∃w(w,C) ∈ P} the underlying logic
program.

Further, let ω be a structure. We denote by P|ω := {(w,C) ∈ P : ω |= C} the program
consisting of all the weighted rules that are satisfied in ω. Now, a stable model of P is a
structure ω that is a stable model of the logic program LP(P|ω) such that ω |= C for all weighted
clauses (∞, C) ∈ P with infinite weight, that is, C ∈ Pω for all weighted clauses (∞, C) ∈ P. As
in Definition 2.2.10, we associate to every stable model ω of P the weight

w(ω) := wP(ω) :=
∏

(w,C)∈P
w ̸=∞
ω|=C

exp(w) =
∏

(w,C)∈P|ω
w ̸=∞

exp(w) = exp

 ∑
(w,C)∈P|ω
w ̸=∞

w

 .

Again, the weight of a formula ϕ is given by

w(ϕ) := wP(ϕ) =
∑

ω stable model
ω|=ϕ

w(ω).

Finally, we associate to every stable model or formula the probability

π() := πP() :=
w()

w(⊤)
.

Example 2.2.51. Recall the program P2 of Example 2.2.27.

rain← cloudy

sprinkler ← ¬cloudy
wet← rain

wet← sprinkler

slippery ← wet

Introducing uncertainty could lead to the following LPMLN program P.

(0, cloudy)

(ln(3), rain← cloudy)

(ln(5), sprinkler ← ¬cloudy)
(∞, wet← rain)

(∞, wet← sprinkler)

(ln(2), slippery ← wet)

46 2. Preliminaries

We find that P has the stable models

ω1 := ∅ ω2 := {cloudy}
ω3 := {sprinkler, wet} ω4 := {sprinkler, wet, slippery}
ω5 := {cloudy, rain, wet} ω6 := {cloudy, rain, wet, slippery}

with weights w(ω1) = 6, w(ω2) = 10, w(ω3) = w(ω5) = 15 and w(ω4) = w(ω6) = 30. Hence,
we find π(ω1) = 3/53, π(ω2) = 5/53, π(ω3) = π(ω5) = 15/106 and π(ω4) = π(ω6) = 15/53. In
particular, we find the road slippery with a probability of π(slippery) = 30/53.

Remark 2.2.14. Note that there is no intuitive interpretation for the soft weights w ∈ R of a
clause C. In contrast, clauses with weight w =∞ are necessarily satisfied.

In the case of a relational alphabet A, aweighted rule (w,C) consists of a weight w ∈ R ∪ {∞}
and a normal clause C. Next, for every ground substitution γ we obtain a ground instance (w,Cγ).
An LPMLN program P then is a finite set of weighted rules, and the grounding P̄ of P is the
set of all ground instances of weighted rules in P. Finally, the semantics of P is the semantics of
the grounding P̄, i.e., πP(ω) =: πP̄(ω) for every Herbrand structure ω.

Example 2.2.52. Reconsider the situation in Example 2.2.37, where we consider the alpha-
bet A := (P, C) that consists of the predicates

P := {smokes, spontaneously smokes}

and the constants
C := {jakob, kilian}.

Each predicate has arity one, and the constants denote two friends, Jakob and Kilian, respec-
tively. Furthermore, spontaneously smokes(jakob) and spontaneously smokes(kilian) indicate
that Jakob and Kilian start to smoke, respectively. By smokes(jakob) and smokes(kilian), we
mean that Jakob and Kilian are smoking, respectively. We then build the following program

smokes(X)← spontaneously smokes(X)

smokes(Y)← smokes(X)

spontaneously smokes(kilian),

indicating that everyone who smokes spontaneously actually smokes, if one friend is smoking,
so does the other friend, and Kilian starts smoking spontaneously. Now assume that we are
unsure whether Kilian and Jakob influence each other to smoke. This could result in the LPMLN

program P below.

(∞, smokes(X)← spontaneously smokes(X))

(ln(2), smokes(Y)← smokes(X))

(∞, spontaneously smokes(kilian))

In this case, we obtain the following grounding P̄.

(∞, smokes(kilian)← spontaneously smokes(kilian))

(∞, smokes(jakob)← spontaneously smokes(jakob))

(ln(2), smokes(kilian)← smokes(kilian))

(ln(2), smokes(jakob)← smokes(kilian))

(ln(2), smokes(jakob)← smokes(jakob))

(ln(2), smokes(kilian)← smokes(jakob))

(∞, spontaneously smokes(kilian))

2.2 Statistical Relational Artificial Intelligence 47

Hence, we find that P has the stable models

ω1 := {spontaneously smokes(kilian), smokes(kilian), smokes(jakob)}
ω2 := {spontaneously smokes(kilian), smokes(kilian)}

with the weights w(ω1) := 16 and w(ω2) := 8. Finally, we find π(ω1) := 2/3 and π(ω2) := 1/3. In
particular, we find Jakob smoking with a probability of π(smokes(jakob)) := 2/3.

Structure Learning of Propositional Probabilistic Logic Programs

Following the overview of Riguzzi (47, §10), we quickly recall some foundations of structure learning
for the case of propositional ProbLog programs in the fragment of ProbLog clauses, i.e., we assume
that each ProbLog program is given by a set of ProbLog clausesP. Generally, in structure learning,
one aims to describe a given dataset with a probabilistic logic program, i.e., one needs to determine
the probabilities and the structure of this program.

Given suitable data, all those algorithms search the space of programs defined by a language
bias and background knowledge with heuristics relying on statistical tests. Here, the language
bias defining the clause and therefore the program space is given by mode declarations of the
form modeb(∗, q) and modeh(∗, p) as well as declarations of the form determination(p, q) for
propositions p and q. Here, modeh(∗, q) means that the proposition q can occur in the head of a
clause, while modeb(∗, q) means that the proposition q can occur in the body of a clause. Finally,
determination(p, q) means that q may occur in the body of a clause with the head p. A positive
ProbLog clause PC lies in the language defined by our bias if we declare modeh(∗,head(PC)),
modeb(∗, b) for all b ∈ body(PC), and determination(head(PC), b) for all b ∈ body(PC).

Moreover, we can express background knowledge in a logic program defining further propo-
sitions in terms of the given data. This is also how one can learn non-positive clauses by adding
a clause neg p← ¬p to the background knowledge for every proposition p. We call the pair of a
language bias and a background knowledge the setting S for a structure learning algorithm.

Example 2.2.53. Recall the program P in Example 2.2.48.

C1 := 0.5 :: cloudy

C2 := 0.6 :: rain← cloudy

C3 := 0.7 :: sprinkler ← ¬cloudy
C4 := 0.1 :: sprinkler ← cloudy

C5 := 0.8 :: wet← rain

C6 := 0.3 :: wet← sprinkler

C7 := 0.9 :: slippery ← wet

To consider the program P in our program search, we specify the following setting S. First,
with modeh(∗,) and modeb(∗,), we state the propositions that occur in the head and body of a
ProbLog clause, respectively.

modeh(∗, claudy) modeb(∗, claudy) modeb(∗, neg claudy)
modeh(∗, rain) modeb(∗, rain)
modeh(∗, sprinkler) modeb(∗, sprinkler)
modeh(∗, wet) modeb(∗, wet)
modeh(∗, slippery)

48 2. Preliminaries

Next, with determination(h, b) we indicate the propositions b that may occur in the body of a
clause with the head h.

determination(rain, cloudy)

determination(sprinkler, cloudy)

determination(sprinkler, neg cloudy)

determination(wet, rain)

determination(wet, sprinkler)

determination(slippery, wet)

So far, we only consider positive clauses. To consider the clause C3, we also need to include the
background knowledge {neg cloudy ← ¬cloudy}.

Note that by the determination/2 predicate a language bias essentially provides the depen-
dence graph, i.e. the corresponding cause-effect relationships, of the searched program as prior
knowledge to the structure learning algorithm.

2.3 Formalizing Causality, Knowledge, and Counterfactuals

Here, we study mathematical formalizations of the concepts of causality and Aristotelian knowl-
edge, which we introduce in Section 2.1. Pearl’s theory (41) expresses causal relationships in terms
of deterministic functional equations, and Aristotelian knowledge then emerges from solving these
equations. In contrast, Bochman (10) aims for a logical theory that captures causal reasoning
and Aristotelian knowledge. Specifically, he follows Decartes and expresses causal reasoning in
rules (32), which aligns his theory with Pearl’s causal models and abductive logic programming
under the supported model semantics. Furthermore, CP-logic (60) is a causal semantics for logic
programs with annotated disjunctions, producing another probabilistic version of Aristotelian
knowledge.

2.3.1 Pearl’s Functional Causal Models

Pearl (41) suggests modeling causal relationships with deterministic functions. Let us illustrate
this idea with the following example.

Example 2.3.1. We consider a closed gas container with fixed volume V . Further, we denote
by T the temperature and be P the pressure in the container. Moreover, assume that the gas
container can be heated to a temperature H. According to the special gas law, this scenario can
be described by the equations

T := H P := k · T
V
, (2.9)

where k is a rigid constant, such as k := 0.25.
Given a concrete volume, for example, V := v := 10, and a concrete temperature, for example,

H := h := 20, we can explicitly determine the pressure P := 2 · k = 0.5. However, in this case
we do not only know about the pressure of P = 0.5, we also have an explanation in terms of
temperature h = 20 and volume v = 10, i.e. we gain Aristotelian knowledge.

The idea of representing causal relationships with deterministic functions is now formally rep-
resented by Pearl’s structural causal models (41). Since they are the main object in Pearl’s theory
of causality (41), we recall their definition.

Definition 2.3.1 (Structural Causal Model (41, §7.1.1)). A structural causal model

M := (U,V,R,Error,Pa,F),

is a tuple, where

2.3 Formalizing Causality, Knowledge, and Counterfactuals 49

U is a finite set of external variables representing the part of the world outside the model

V is a finite set of internal variables determined by the causal relationships in the model

R is a function assigning to each variable X ∈ U ∪V a set R(X) of possible values

Error is a function assigning to each internal variable V ∈ V its error terms Error(V) ⊆ U,
i.e. the set of external variables V directly depends on

Pa is a function assigning to each internal variable V ∈ V its parents Pa(V) ⊆ V, i.e. the
set of internal variables V directly depends on

F is a function assigning to every internal variable V ∈ V a map

F(V) := FV :
∏

X∈Pa(V)

R(X)×
∏

U∈Error(V)

R(U)→ R(V),

which itself assigns to each value assignments pa(V) and error(V) of the parents Pa(V) and
the error terms Error(V), respectively, a possible value FV (pa(V), error(V)) ∈ R(V).

Here, for a subset of variables X ⊆ U ∪V, a value assignment is a function x that chooses a
possible value x(X) ∈ R(X) for each variable X ∈ X. In this context, a situation is a value
assignment u for the external variables U. Finally, we identifyM with the system of equations

M := {V := FV (Pa(V),Error(V))}V ∈V.

A solution s of M then is a value assignment on the variables U ∪V such that each equation
inM is satisfied.

Remark 2.3.1. One can consider the solutions of a structural causal model as Pearl’s proposal
for the formalization of Aristotelian knowledge.

Example 2.3.2. In Example 2.3.1, we define the set of external variables as U := {V,H},
the set of internal variables as V := {T, P} and specify the possible values R(X) := R for
all variables X ∈ V ∪U. Furthermore, we set Pa(T) := ∅, Pa(P) := {T}, Error(T) := {H}
and Error(P) := {V }. Finally, we associate with the internal variables T and P the deterministic
functions

F(T)(H) := FT (H) := H and F(P)(T, V) := FP (T, V) := k · T
V
, respectively.

Overall,M := (U,V,R,Error,Pa,F) yields a structural causal model, which is identified with the
system of equations (2.9). A situation is then given by a concrete volume, for example, V := v := 10,
and a concrete temperature, for example, H := h := 20, which allows us to explicitly determine
the pressure P := 0.5 in Example 2.3.1.

Remark 2.3.2. Note that the parents Pa(V) and the error terms Error(V) of an internal vari-
able V ∈ V can usually be read from the defining function FV . Hence, in the following, we will
not explicitly specify the parent map Pa and error term map Error.

In this thesis, we focus mainly on Boolean structural causal models.

Definition 2.3.2. A Boolean structural causal modelM := (U,V,Error,Pa,F) is a structural
causal modelM = (U,V,R,Error,Pa,F) with R(X) := {True, False} for every X ∈ U ∪V.

Example 2.3.3. Consider a road that passes through a field with a sprinkler in it. The sprinkler
is turned on, written sprinkler, whenever a weather sensor is activated, written sensor. Further,
it may rain, denoted by rain. If it rains or the sprinkler is on, the pavement of the road gets wet,
denoted by wet. Finally, a wet road is slippery, denoted by slippery.

50 2. Preliminaries

This mechanism can be represented by a Boolean structural causal model M with internal
variables V := {sprinkler, wet, slippery}, with external variables U := {sensor, rain} and with
the functions, given by the equations

sprinkler := sensor wet := rain ∨ sprinkler slippery := wet.

We are interested in structural causal models because they allow us to represent the effects of
external interventions.

The Effect of External Interventions and Potential Outcomes

Consider a fixed structural causal modelM := (U,V,R,Error,Pa,F). Assuming we are given a
subset of internal variables I ⊆ V along with a value assignment i, we aim to represent the effect
of forcing the variables in I to attain the values specified by i. For this purpose, we construct the
modified (causal) model or submodel

Mi := (U,V,R,Error,Pa,Fi).

This is done by replacing the map F with the map Fi, which is defined by setting

Fi(V)(pa(V), error(V)) :=

{
i(V), if V ∈ I

F(V)(pa(V), error(V)), else

for every internal variable V ∈ V with value assignments pa(V) and error(V) for the parents Pa(V)
and the error terms Error(V), respectively. The idea here is that the modified modelMi represents
a minimal change to the model M that forces the variables in I to attain the values specified
by i (41, Ch. 7).

Example 2.3.4. If we decide to switch the sprinkler on in the causal modelM of Example 2.3.3

sprinkler := sensor wet := rain ∨ sprinkler slippery := wet,

we obtain the modified modelMsprinkler :=Msprinkler:=True that is given by the following equa-
tions.

sprinkler := True wet := rain ∨ sprinkler slippery := wet

Notation 2.3.1. Let V be an internal variable of a Boolean structural causal modelM. In this
case, we writeMV :=MV :=True andM¬V :=MV :=False.

As in Example 2.3.4 our actions often force a variable in a causal model to attain a new value.
Introducing the do-operator by setting

Mdo(i) :=Mi

for a structural causal model M and a value assignment on internal variables i, Pearl (41) em-
phasizes that submodels Mdo(i) often result from doing something that forces some variables to
values according to the assignment i. To obtain well-defined results, Pearl (41) restricts himself
to the study of functional causal models.

Definition 2.3.3 (Functional Causal Model and Potential Response). A (functional) causal
modelM := (U,V,R,Error,Pa,F) is a structural causal model, in which for each value assign-
ment i to a subset of internal variables I ⊆ V, every situation u ofM yields a unique solution si(u)
of the modified modelMi.

2.3 Formalizing Causality, Knowledge, and Counterfactuals 51

In this case, we write Yi(u) for the value that an internal variable Y ∈ V attains in the solu-
tion si(u) of the modified modelMi provided that the external variables take the values specified
by the situation u. We call Yi(u) ∈ R(Y) the potential response of Y to the intervention of forc-
ing the variables in I to attain the values specified by i in the situation u. Finally, Y (u) ∈ R(Y)
denotes the value that the internal variable Y ∈ V attains in the modelM if the external variables
take the values specified by the situation u.

Remark 2.3.3. A potential response y = Yi(u), is interpreted as the counterfactual statement:

“The variable Y would have attained the value y in the situation u, had we forced the variables
in I to attain the values specified by i.”

Example 2.3.5. Reconsider the causal modelM in Example 2.3.3

sprinkler := sensor wet := rain ∨ sprinkler slippery := wet.

Assume we know that the sensor is not triggered and that it does not rain. This means that we
are given the situation u consisting of sensor = False and rain = False. Furthermore, by inves-
tigating the modified modelMsprinkler in Example 2.3.4 we find that slipperysprinkler(u) = True
while slippery(u) := False. We interpret these results as the following statements:

“The road would have been slippery if we had switched on the sprinkler, even though the
sensor is not triggered and it is not raining.”

“The road is not slippery if the sensor is not triggered and if it does not rain.”

Logic Programs and Structural Causal Models

Rückschloß and Weitkämper (49) notice that the Clark completion (25) essentially associates each
logic program P with a causal model comp(P). This then allows them to transfer Pearl’s notion of
interventions to logic programming. In this way, they recover the notion of intervention proposed
by Vennekens et al. (60) and Riguzzi et al. (48) in probabilistic logic programming.

Assume i is a truth value assignment on a subset of propositions I ⊆ P. Now, the effect of
forcing the propositions in I to attain the truth values according to i is represented by the modified
program Pi := Pdo(i), which results from P by erasing all clauses with heads in I and by adding
all positive literals p ∈ i.

Example 2.3.6. Recall the program P2 of Example 2.2.27.

rain← cloudy

sprinkler ← ¬cloudy
wet← rain wet← sprinkler

slippery ← wet

If we intervene in P2 and manually turn the sprinkler off (or on), we obtain the following program.

rain← cloudy

(sprinkler)

wet← rain wet← sprinkler

slippery ← wet

52 2. Preliminaries

Probabilistic Causal Models

Next, we introduce probabilities into a functional causal model M and specify a probability
distribution over the situations ofM. In this way, we obtain a probabilistic version of Aristotelian
knowledge.

Definition 2.3.4. A probabilistic (Boolean) causal model M := (M, π) is given by a
(Boolean) functional causal model M together with a probability distribution π on the situa-
tions ofM.

Example 2.3.7. Modify Example 2.3.3. Consider a road that passes through a field with a sprin-
kler in it. The sprinkler is turned on, written sprinkler, by a weather sensor with probability 0.1
if it is cloudy, denoted by cloudy and with probability 0.7 if it is not cloudy. In addition, it
rains, denoted by rain, with probability 0.6 if the weather is cloudy. If it rains or the sprinkler
is on, the pavement of the road gets wet, denoted by wet, with probability 0.9. And in the case
where the pavement is wet, we observe with a probability of 0.8 that the road is slippery, denoted
by slippery.

This mechanism can be represented by a Boolean functional causal model, M, with internal
variables V := {cloudy, rain, sprinkler, wet, slippery}, and external variables U := {u1, ..., u6}.
The functions are then given by the following equations.

cloudy := u1

rain := cloudy ∧ u2 sprinkler := (cloudy ∧ u3) ∨ (¬cloudy ∧ u4)
wet := (rain ∨ sprinkler) ∧ u5 slippery := wet ∧ u6

To represent the uncertainties in our story, we specify the probabilities π(u1) = 0.5, π(u2) = 0.6,
π(u3) = 0.1, π(u4) = 0.7, π(u5) = 0.9 and π(u6) = 0.8. Furthermore, asserting that u1, ..., u6 are
mutually independent Boolean random variables defines a unique distribution π on the situations
ofM, resulting in the probabilistic Boolean causal model M := (M, π).

Here, we assume that uncertainty arises from hidden variables that we do not explicitly
model. However, the influence of these hidden variables is encapsulated in the external vari-
ables U := {u1, ..., u6}. For example, the variable u3 summarizes the potential causes of why the
sprinkler could be on if it is cloudy. These potential causes, such as sensor failure or children
playing and manually switching on the sprinkler, are not explicitly modeled inM. Nevertheless,
the potential influence of these missing parameters is represented by the external variables U and
the distribution π. An advantage of this representation is its similarity to ProbLog, which allows
programmers to readily execute computations in Boolean causal models.

Let M := (M, π) be a probabilistic causal model. Since this implies that M is a functional
causal model, every situation u corresponds to a unique solution s(u) of the corresponding system
of equations. Hence, by defining

πM(ω) :=

{
π(u), if ω = s(u)

0, else

for every value assignment ω of the variables U∪V, the model M gives rise to a joint probability
distribution of the random variables in U ∪V.

Example 2.3.8. In Example 2.3.7, the causal model M yields a probability distribution πM on
the truth value assignments for the variables

U ∪V := {cloudy, rain, sprinkler, wet, slippery, u1, ..., u6}.

This allows us, for instance, to calculate the probability πM(rain) that it rains.

πM(rain) = π(u1) · π(u2) = 0.5 · 0.6 = 0.3

2.3 Formalizing Causality, Knowledge, and Counterfactuals 53

Finally, probabilistic causal models do not only support queries about conditional and uncon-
ditional probabilities. They also support two further causal query types: queries for the effect of
external interventions and counterfactual queries.

Predicting the Effect of External Interventions in the Probabilistic Case

Fix a probabilistic causal model M := (M, π) with external variables U and internal variables V.
Assume we are given a subset of internal variables I ⊆ V together with a value assignment i.
To calculate the effect of forcing the variables in I to attain the values specified by i, we build
the modified model or submodel Mi := (Mi, π). From the modified model Mi we can then
calculate the desired post-interventional probabilities. According to Pearl (41, §1.4.3), we denote
the resulting probability distribution by πM(|do(I := i)) := πM(|do(i)). Here, again Pearl’s
do-operator do() indicates that we actively intervene to change our model.

Example 2.3.9. We recall Example 2.3.7 and ask for the post-interventional probability that the
road is slippery after turning off the sprinkler. In this case, we query the modified modelM¬sprinkler
for slippery to obtain the probability

πM(slippery|do(¬sprinkler)) = π(u1) · π(u2) · π(u5) · π(u6) = 0.216

for the road to be slippery after switching the sprinkler off.
Finally, we highlight that this result differs from the probability

πM(slippery|¬sprinkler) =
π(u1) · π(u2) · π(¬u3) · π(u5) · π(u6)
π(u1) · π(¬u3) + π(¬u1) · π(¬u4)

= 0.432

that it is slippery if we observe the sprinkler to be off. In particular, observing the sprinkler being
off enhances the probability that it is cloudy, making rain more probable, while manually turning
the sprinkler off does not allow such a conclusion. Therefore, in general, intervening in a model
yields outcomes that differ from deriving conclusions solely from observations.

Further, probabilistic causal models allow us to generalize potential responses to treat coun-
terfactuals involving internal variables.

Counterfactual Reasoning or Reasoning with both Observations and Interventions

We do not only want to either observe or intervene in a probabilistic causal model M := (M, π).
We also would like to reason on what would have happened if we had intervened before observing
some evidence. Hence, let E, I ⊆ V be two subsets of the internal variables V. Furthermore, let q
be an event in the probability space generated by the probabilistic causal model M. Now suppose
we observe evidence that the variables in E attain values according to the assignment e and we
ask ourselves what is the probability πM (q|e,do(i)) that q would be true if we had forced the
variables in I to attain values according to the assignment i. Note that i and e may contradict
each other. According to Pearl (41, §1.4.4), we answer such a counterfactual query in three
steps:

1.) In the abduction step, we adjust the distribution on the situations u by replacing π() with
the conditional distribution π(|e) yielding the model (M, π(|e)).

2.) In the action step, we intervene in the resulting model according to the assignment i yielding
the modified model (Mi, π(|e)).

3.) In the prediction step, we finally compute the desired probability πM (q|e,do(i)) by query-
ing the model (Mi, π(|e)) in step 2.) for the probability of q.

In the first step, we restrict ourselves to the possible worlds in which we can observe our
evidence. Further, by employing the potential outcome framework, we build hypothetical scenarios
from our intervention to finally compute the desired probability.

54 2. Preliminaries

We call the probability π(q|e,do(i)) a counterfactual probability, as it denotes our degree
of belief in a counterfactual query. We use the notation π(q|e,do(i)) of Papantonis and Belle (40)
to highlight that counterfactual probabilities are computed using both conditional probabilities
and Pearl’s interventions.

Example 2.3.10. Revisiting Example 2.3.7, let us assume that we observe both rain and slippery
road. We are interested in determining the probability

π (slippery|slippery, rain,do(¬rain)) ,

which quantifies the likelihood of the road being slippery under the counterfactual scenario where
it had not rained.

To answer this query, in the abduction step, we first update the distributions on the sit-
uations according to the evidence e := {rain = True, slippery = True}. In particular, we
obtain π(u1|e) = 1, π(u2|e) = 1, π(u3|e) = 0.1, π(u4|e) = 0.7, π(u5|e) = 1 and π(u6|e) = 1. Fur-
ther, in the action step, we intervene in the resulting causal model according to rain := False
and get the modified model

cloudy := u1

rain := False sprinkler := (cloudy ∧ u3) ∨ (¬cloudy ∧ u4)
wet := (rain ∨ sprinkler) ∧ u5 slippery := wet ∧ u6.

Finally, in the prediction step, we compute the desired probability from this modified causal model.
By solving the equations we obtain slippery = u3, which yields the result

π (slippery|slippery, rain,do(¬rain)) = 0.1.

To execute the abduction step, it is necessary to calculate and store the conditional distribu-
tion π(|e) on the situations. To avoid storing and computing the distribution π(|e), we adopt
the twin network method proposed by Balke and Pearl (5). Initially, we create two copies, Vr

and Va, of the internal variables V. One represents the real world where evidence is observed,
and the other represents Lewis’ alternative worlds (37). In addition, we set Ur := Ua := U
for the external variables U. This enables us to establish canonical mappings a/r for subsets of
variables X ⊆ U ∪V and their value assignments, respectively.

Next, we construct a new causal model MT with internal variables Va ∪ Vr, external vari-
ablesU, parents Pa()a/r, and error terms Error()a/r by defining for every internal variable V ∈ V:

V a := fV (pa(V)a, error(V)a) V r := fV (pa(V)r, error(V)r)

This leads to the twin model MT := (MT , π). Following Pearl (41), to construct Lewis’ alter-
native worlds (37) we intervene and force the variables in Ia to attain the values specified by ia,
yielding the modified twin model MT

ia := (MT
ia , π). One then expects that

πM(q|e,do(i)) = πMT
ia
(qa|er).

Remark 2.3.4. Balke and Pearl (5) informally argue for the correctness of the above equation,
a formal proof can be found in the appendix of Kiesel et al. (34).

Example 2.3.11. If we again calculate the probability πM (slippery|slippery, rain,do(¬rain)) in
Example 2.3.10 using the twin network method, we build the modified twin modelMT

¬raina below.

cloudyr := u1 cloudya := u1

rainr := cloudyr ∧ u2 raina := False

sprinklerr := (cloudyr ∧ u3) ∨ (¬cloudyr ∧ u4) sprinklera := (cloudya ∧ u3) ∨ (¬cloudya ∧ u4)
wetr := (rainr ∨ sprinklerr) ∧ u5 weta := (raina ∨ sprinklera) ∧ u5
slipperyr := wetr ∧ u6 slipperya := weta ∧ u6 (2.10)

2.3 Formalizing Causality, Knowledge, and Counterfactuals 55

As desired, we then obtain

πM(slippery|slippery, rain,do(¬rain)) = πMT
¬raina

(splipperya|splipperyr, rainr) = 0.1.

2.3.2 Causal Queries for Logic Programs with Annotated Disjunctions

In Section 3.4.4, we embed logic programs with annotated disjunctions (62) into our formalism
tailored to causal reasoning. This then allows us to transfer our causal reasoning to logic programs
with annotated disjunctions.

Vennekens et al. (60) independently introduce CP-logic as a causal semantics for logic programs
with annotated disjunctions. The target object of this semantics is represented by processes, which
are a generalization of Shafer’s event trees (56, Ch. 2). In this thesis, our objective is to align
our causal reasoning with their results. Therefore, we do not delve into the specific construction
of this semantics. Instead, we focus on its realization concerning the causal query types, that is,
predicting the effect of external intervention and counterfactual queries, as outlined by Vennekens
et al. (61) and Riguzzi et al. (48).

Let P be an LPAD in a propositional alphabet P, and let i be a truth value assignment on
a subset of propositions I ⊆ P. In order to represent the intervention of forcing the propositions
in I to attain the truth values specified by the assignment i, Vennekens et al. (61) and Riguzzi et

al. (48) build the modified program Pi := Pdo(i): The program Pi results from P by erasing all
head atoms hi ∈ I from the clauses C ∈ P and adding a fact p : 1← for every positive literal p ∈ i.
Finally, for a formula ϕ the probability

πPi
(ϕ) := πP(ϕ|do(i))

is interpreted as the probability of ϕ to hold after intervening according to i.

Example 2.3.12. If we switch off the sprinkler in the LPAD of Example 2.2.41

cloudy : 0.5

rain : 0.6; sprinkler : 0.1← cloudy

sprinkler : 0.8← ¬cloudy
wet : 0.7← rain

wet : 0.3← sprinkler

slippery : 0.9← wet,

we obtain the following modified program.

cloudy : 0.5

rain : 0.6← cloudy

← ¬cloudy (No selection chooses this clause)

wet : 0.7← rain

wet : 0.3← sprinkler

slippery : 0.9← wet

In this case, we find that the road is slippery with a probability of

π(slippery|do(¬sprinkler)) = 0.5 · 0.6 · 0.7 · 0.9 = 0.189.

Next, assume that we additionally observe the evidence that the propositions E ⊆ P attain
truth values according to the assignment e. We are interested in the counterfactual probabil-
ity π(ϕ|e,do(i)) that a formula ϕ would hold if we had intervened according to i before observing
the evidence e. To answer this counterfactual query, Vennekens et al. (61) use the following
procedure.

56 2. Preliminaries

Procedure 2.3.1 (Treatment of Counterfactuals in CP-logic). Suppose that the logic program Pσ

has a unique stable model ω(σ) for every selection σ of P. We intervene in the logic program Pσ

according to i and obtain the logic program Pσ
i . Assuming that the program Pσ

i has a unique
stable model ωi(σ) for every selection σ, we define

πσ(ϕ) =

{
1, ω(σ) |= e and ωi(σ) |= ϕ

0, else
.

Finally, we express

πP(ϕ|e,do(i)) :=
∑

σ selection of P

πσ(ϕ) · π(σ)
πP(e)

. (2.11)

Example 2.3.13. Recall the LPAD P in Example 2.2.41

cloudy : 0.5

rain : 0.6; sprinkler : 0.1← cloudy

sprinkler : 0.8← ¬cloudy
wet : 0.7← rain

wet : 0.3← sprinkler

slippery : 0.9← wet

and consider the probability

π(slippery|sprinkler, cloudy, do(¬sprinkler)),

which represents the likelihood of the road being slippery if we had switched the sprinkler off
before observing that the sprinkler is indeed on while it is cloudy. In this case, we examine the
selections σ that choose the following clauses for Pσ.

cloudy

sprinkler ← cloudy

wet← sprinkler

slippery ← wet

Specifically, we find that it is not raining, since we never select the clause rain← cloudy. There-
fore, manually turning off the sprinkler certainly results in a dry road that is not slippery. Con-
sequently, we find

π(slippery|sprinkler, cloudy, do(¬sprinkler)) = 0.

2.3.3 Bochman’s Logical Theory of Causality

Bochman’s logical theory of causality (10) sets the formal frame of the theory presented in this
thesis. In this section, we provide an overview of this logical framework designed for the study of
causality and Aristotelian knowledge.

A Motivation of Bochman’s Framework

Bochman (10) proposes a formalization of causal reasoning and Aristotelian knowledge as intro-
duced in Chapter 2.1. He considers an agent who employs causal reasoning to make sense of
factual knowledge about the world, that is, knowledge about what is. Such factual knowledge
can, for instance, be observed or logically derived from other factual knowledge. Causal reasoning

2.3 Formalizing Causality, Knowledge, and Counterfactuals 57

then becomes a binary relation that explains factual knowledge through other factual knowledge.
The resulting causal explanations are then either infinite regressions or they begin with factual
knowledge that is judged to be self-explained. Finally, Aristotelian knowledge is the subset of
factual knowledge that can be explained by causal reasoning.

Example 2.3.14. We may observe that a lightning strike hits a house and that this house burns
down, that is, we have factual knowledge about the lightning strike hitting the house and the
house burning down. If we decide further that the information on the lightning strike does not
need further explanation, i.e. we accept it as self-explained a priori knowledge, we can use the
lightning strike to explain the observation of the house burning down. This leads us to the
following conclusion: “Lightning strikes cause houses to burn down.”

Everyday causal reasoning also behaves well with logical inference in the causes of events.

Example 2.3.15. If we accept the statement “Smoking or genetic predispositions may cause
cancer”, we typically also accept the statement “Smoking may cause cancer” because “Smoking
or genetic predispositions” is a consequence of “Smoking”.

Furthermore, causal reasoning behaves well with logical inference in the effect of events.

Example 2.3.16. In the scenario of Example 2.3.14, it is reasonable to assume the self-explained
factual knowledge that a house burning down usually includes the knowledge about a fire in the
bedroom of this house. As a fire in the bedroom is a logical consequence of the house burning down
in Example 2.3.14, we would deduce the statement “Lightning strikes cause fire in bedrooms”.

Bochman (10) now formalizes observations and factual knowledge with propositional formulas
in an alphabet P.

Example 2.3.17. To describe Examples 2.3.14 and 2.3.16 we consider the alphabet

P := {lightning, arson, fire, fire bedroom}.

Here, lightning denotes the event that a lightning strike hits a house, arson denotes the event
that arson takes place, fire denotes the event of a house burning down and fire bedroom denotes
the event of fire in the bedroom of this house.

We may, for example, assume the factual background knowledge fire→ lighting∨arson. This
means we have the factual knowledge that a house burning down usually includes knowledge about
a lightning strike hitting the house or arson. If we now observe that a house is burning down, that
is, if we observe fire, we conclude that a lightning hit the house or that arson took place, that
is, arson ∨ fire. However, we would not accept fire as an explanation for these events; that is,
we have factual knowledge about arson or lightning strike but not Aristotelian knowledge.

Next, Bochman (10) formalizes causal reasoning as a binary relation (⇒)/2 on factual knowl-
edge, that is, on propositional formulas.

Example 2.3.18. In Example 2.3.17, causal reasoning is given by a binary relation (⇒)/2 on
the formulas in the alphabet P := {lightning, arson, fire, fire bedroom}. Specifically, for two
propositional formulas ϕ and ψ we find ϕ⇒ ψ whenever we would accept ϕ being true as a causal
explanation for ψ being true, that is, if we would accept ϕ as a cause of ψ. Hence, among other
relationships we may find:

arson⇒ fire (arson causes houses to burn down)

arson⇒ fire bedroom (arson causes fire in bedrooms)

arson⇒ fire ∧ fire bedroom (arson causes houses burning down and fire in bedrooms)

lightning ∨ arson⇒ fire (lightnings or arson cause houses burning down)

lightning ⇒ lightning (lightnings are self-explained)

58 2. Preliminaries

lightning ∨ arson⇒ fire ∧ fire bedroom
(lightnings or arson cause houses burning down and fire in bedrooms)

(fire→ fire bedroom)⇒ (fire→ fire bedroom)

(concluding from a house burning down to a fire in the bedroom of this house is self-explained)

We highlight that causal reasoning does not lead to a new logical connective; that is, nested
expressions like arson⇒ fire⇒ fire bedroom have no meaning.

Examples 2.3.15 and 2.3.16 illustrate that causal reasoning (⇒)/2 satisfies the following law.

Law 5. Causal reasoning (⇒)/2 respects logical inference in causes and effects.

Law 5 yields that causal reasoning (⇒)/2 is represented by production inference relations.

Definition 2.3.5 (Production Inference Relation). A production inference relation is a binary
relation (⇒)/2 on the set of formulas in the alphabet P that satisfies the following assertions for
all propositional formulas ϕ, ψ and ρ.

i) If we have ϕ |= ψ and ψ ⇒ ρ, then ϕ⇒ ρ follows. (Strengthening)

ii) If we have ϕ⇒ ψ and ψ |= ρ, then ϕ⇒ ρ follows. (Weakening)

iii) If we have ϕ⇒ ψ and ϕ⇒ ρ, then ϕ⇒ ψ ∧ ρ follows. (And)

iv) We have ⊤ ⇒ ⊤ and ⊥ ⇒ ⊥. (Truth and Falsity)

Note that the propositional formulas ϕ, ψ and ρ do not mention the binary relation (⇒)/2.
If we find ϕ ⇒ ψ for two formulas ϕ and ψ, we say that ϕ causes ψ or that ϕ is a cause

of ψ or that ψ is an effect of ϕ. Given a production inference relation (⇒)/2, we write Φ ⇒ ψ
for a set of propositional formulas Φ and a formula ψ if there exists a finite subset Φ′ ⊆ Φ such

that
(∧

ϕ∈Φ′ ϕ
)
⇒ ψ. Furthermore, we define the consequence operator C by assigning to a

set of propositional formulas Φ the set of propositional formulas

C(Φ) := {ψ propositional formula: Φ⇒ ψ}.

Again, Φ and C(Φ) are sets of propositional formulas that do not mention the relation (⇒)/2.

The causal operator C(Φ) represents the Aristotelian knowledge obtained from causal reason-
ing (⇒)/2 and factual knowledge about the propositional formulas ϕ ∈ Φ; in other words, C(Φ)
represents the propositional formulas that are causally explainable with Φ.

Example 2.3.19. Recall the alphabet P := {lightning, arson, fire, fire bedroom} of Exam-
ple 2.3.17. Assume we observe a lightning strike hitting the house that burns down, that is, we
observe the event Φ := {lightning, fire}. Suppose that the lightning strike is self-explained and
causally explains why the house is burning down, that is

lightning ⇒ lightning and lightning ⇒ fire.

Furthermore, suppose that the event of the house burning down causally explains a fire in the
bedroom of this house, i.e.,

fire⇒ fire bedroom.

Finally, suppose that our causal reasoning cannot decide whether arson took place.
We conclude that

lightning, fire, fire bedroom ∈ C(Φ) and arson ̸∈ C(Φ),¬arson ̸∈ C(Φ).

In summary, from Definition 2.3.8 ii) and iii), we conclude that C(Φ) is given by the deductive
closure of the set of literals {lightning, fire, fire bedroom}, that is,

C(Φ) = {lightning, fire, fire bedroom}.

2.3 Formalizing Causality, Knowledge, and Counterfactuals 59

In the current setting, Bochman (10) further restricts himself to explaining only factual knowl-
edge, that is, causal reasoning only explains events that actually occur.

Law 6. When provided with factual knowledge represented by a deductively closed set of proposi-
tional formulas Φ, the Aristotelian knowledge explained by our causal reasoning (⇒)/2 constitutes
a subset of this factual knowledge, i.e. C(Φ) ⊆ Φ.

This principle leads to the following property of production inference relations.

Definition 2.3.6 (Regular Production Inference Relation). A regular production inference re-
lation (⇒)/2 is a production inference relation that satisfies the following property:

Whenever ϕ⇒ ψ and (ϕ ∧ ψ)⇒ ρ holds, we find that ϕ⇒ ρ also holds. (Cut)

Remark 2.3.5. Regularity also means that we can substitute other demonstrations in our current
demonstration.

As mentioned earlier, regularity formalizes that we only explain factual knowledge.

Theorem 2.3.1 (Bochman (9, Theorem 8.9)). If and only if a production inference relation is
regular, we find C(Φ) ⊆ Φ for every deductively closed set of formulas Φ. In other words, the
production inference relation (⇒)/2 satisfies Law 6. □

Furthermore, the causal reasoning (⇒)/2 adheres to the common laws introduced in Chap-
ter 2.1. Firstly, the causal reasoning (⇒)/2 satisfies Aquinas’ natural necessity, as stated in Law 1.

Example 2.3.20. In Example 2.3.14, this means, for example, that a house will catch fire when-
ever it is struck by lightning.

Now, suppose that we have ϕ ⇒ ρ and ψ ⇒ ρ for the propositional formulas ϕ, ψ, and ρ.
Additionally, let us assume that we possess the factual knowledge ϕ ∨ ψ. Hence, we now know
that either ϕ or ψ is valid, and in both cases, we can explain ρ using Aquinas’ natural necessity
as stated in Law 1.

Example 2.3.21. Assuming that both lightning and arson cause a house to burn down, that is,
in the language of Example 2.3.17, we obtain the statements:

lightning ⇒ fire arson⇒ fire

If we now observe a fire in a house and know that either arson took place or a lightning struck
the house, by natural necessity in Law 1, we would like to use the disjunction lightning ∨ arson
to explain fire, i.e. we would like to infer

lightning ∨ arson⇒ fire.

We conclude that causal reasoning should be a basic production inference relation.

Definition 2.3.7 (Basic Production Inference Relation). A basic production inference rela-
tion (⇒)/2 is one that satisfies the following property.

Whenever ϕ⇒ ρ and ψ ⇒ ρ we find that (ϕ ∨ ψ)⇒ ρ is valid. (Or)

Now, we have characterized the binary relations on propositional formulas that constitute
causal reasoning in the sense of Bochman (10), that is, we are able to define causal production
inference relations.

Definition 2.3.8 (Causal Production Inference Relation). A causal production inference relation
is one that is both regular and basic.

60 2. Preliminaries

Aristotelian Knowledge – The Semantics of Causal Production Inference Relations

Next, we endow (causal) production inference relations with a non-monotonic semantics that
represents the possible states of Aristotelian knowledge. In doing so, we rely on Leibniz’s principle
of sufficient causation, as stated in Law 2.

Example 2.3.22. In Example 2.3.14, this means, for example, that a fire does not happen without
a reason. Therefore, if we observe a fire, it is caused by either a lightning strike or arson.

Now, Theorem 2.3.1 and Leibniz’s principle of sufficient causation in Law 2 immediately yield
the following semantics for (causal) production inference relations.

Definition 2.3.9 (Exact Theories). An exact theory of a (causal) production inference rela-
tion (⇒)/2 is a deductively closed set of propositional formulas Φ such that C(Φ) = Φ.

Exact theories represent the potential states of Aristotelian knowledge corresponding to the
causal reasoning (⇒)/2. Further, we assume causal reasoning to be complete, i.e., that it explains
the truth or falsity of every possible observation.

Law 7 (Completeness). Recall from Definition 2.2.9 that a world is a consistent, deductively closed
set of propositional formulas ω that is maximal with respect to inclusion. Every world ω is either
an exact theory or falsified, i.e. ω ⇒ ⊥.

In this case, we shall restrict our interest to exact theories that represent complete descriptions
of the state of affairs.

Definition 2.3.10 (Causal Worlds Semantics). A causal world of a (causal) production inference
relation (⇒)/2 is a world ω that is an exact theory. We call the set of all causal worlds Causal(⇒)
the causal worlds semantics of (⇒)/2.

Example 2.3.23. In the Examples 2.3.14 and 2.3.16, the causal worlds correspond to the following
sets of literals.

{¬lightning,¬arson,¬fire,¬fire bedroom} {lightning,¬arson, fire, fire bedroom}
{¬lightning, arson, fire, fire bedroom} {lightning, arson, fire, fire bedroom}

Representing Causal Knowledge through Rules

So far, as illustrated in Example 2.3.18, we represent causal reasoning by stating the whole binary
relation of cause and effect. Next, Bochman (10) follows Descartes and expresses causal reasoning
through a set of causal rules (32, Ch. 1).

Definition 2.3.11 (Causal Rules and Causal Theories). A causal rule R is an expression of the
form

ϕ⇒ ψ

for two propositional formulas ϕ and ψ, where we call ϕ the cause and ψ the effect of R. In
addition, a causal theory ∆ is a set of causal rules. We denote by (⇒∆)/2 the smallest causal
production inference relation extending ∆ and by C∆ the corresponding consequence operator.
Observe that (⇒∆)/2 consists of all causal rules following from ∆ with the rules (Strengthening),
(Weakening), (And), (Truth and Falsity), (Cut) and (Or) in Definitions 2.3.5, 2.3.6, and 2.3.7,
i.e., all rules that apply for the implication in propositional calculus except reflexivity ϕ→ ϕ. A
causal world of ∆ is a causal world of the production inference relation (⇒∆)/2. Finally, we
write Causal(∆) := Causal(⇒∆) for the causal worlds semantics of ∆.

Remark 2.3.6. For any set of propositional formulas Φ, the set C∆(Φ) consists of all formulas ψ
such that Φ⇒ ψ can be derived from ∆ using the rules of (Strengthening), (Weakening), (And),
(Truth and Falsity), (Cut), and (Or).

2.3 Formalizing Causality, Knowledge, and Counterfactuals 61

Example 2.3.24. In the formalism of Example 2.3.17, we consider the following causal theory ∆.

arson⇒ arson ¬arson⇒ ¬arson
lightning ⇒ lightning ¬lightning ⇒ ¬lightning
(fire→ fire bedroom)⇒ (fire→ fire bedroom) ¬fire bedroom⇒ ¬fire bedroom
lightning ⇒ fire ¬fire⇒ ¬fire
arson⇒ fire

In this case, the theory ∆ has the causal worlds of Example 2.3.23.

Example 2.3.25. Consider the following causal theory ∆.

(lightning ∨ arson)⇒ (lightning ∨ arson)
(fire→ fire bedroom)⇒ (fire→ fire bedroom)

lightning ⇒ fire ¬fire⇒ ¬fire
arson⇒ fire

Note that ∆ does not make a statement about the proposition arson. Hence, the event arson
cannot be explained by ∆ and therefore arson should be false in any causal world of ∆. As the
same argument holds also for ¬arson, we conclude that there is no causal world of ∆. We conclude
further that the causal world semantics is only suitable if we have enough causal knowledge to pin
down whole worlds exactly.

As any world is the deductive closure of its literals and as disjunctions in causes of a rule can
be split up into different causal rules due to (Or) in Definition 2.3.7, we may restrict ourselves to
the study of determinate causal theories.

Definition 2.3.12 (Literal, Atomic and Determinate Causal Theory). A literal causal rule is a
causal rule of the form b1 ∧ ...∧ bn ⇒ l for literals b1, ..., bn, l. If, in addition, l ∈ P is an atom, we
call the rule atomic. Furthermore, a default is a rule of the form ϕ ⇒ ϕ for a formula ϕ and a
constraint is a causal rule b1 ∧ ... ∧ bn ⇒ ⊥ for literals b1, ..., bn.

Now, a causal theory ∆ is called literal or atomic if it only mentions literal or atomic causal
rules. An (atomic) determinate causal theory ∆ ∪C is the union of an (atomic) literal causal
theory ∆ and a set of constraints C. Lastly, a literal l is a default of a determinate causal
theory ∆ if l⇒ l ∈ ∆.

Remark 2.3.7. Bochman (10) refers to atomic causal rules and theories by positive literal causal
rules and theories, respectively. He further uses the term positive determinate causal theory for
an atomic determinate causal theory in our sense.

We obtain the following characterization for the causal worlds of a determinate causal the-
ory (10, §4.5.2).

Definition 2.3.13 (Completion of a Determinate Causal Theory). The completion comp(∆) of
a determinate causal theory ∆ is the set of all propositional formulas

l↔
∨

ϕ⇒l∈∆

ϕ,

where l is a literal or ⊥.

Theorem 2.3.2 (Bochman (9, Theorem 8.115)). The causal world semantics Causal(∆) of a
determinate causal theory ∆ coincides with the set of all models of its completion, i.e.

Causal(∆) := {ω world: ω |= comp(∆)}. □

62 2. Preliminaries

Further, we obtain the following characterization for causal reasoning that corresponds to
literal causal theories.

Theorem 2.3.3 (Bochman (10, Theorem 4.23)). If ∆ is a literal causal theory, for any literal l
and any set of literals ϵ, we find ϵ⇒∆ l if and only if ϵ⇒ l is derivable from ∆ using the following
inference rules for sets of lierals ϵ, ϵ′ and literals l, l′:

If ϵ⇒ l, then ϵ ∪ ϵ′ ⇒ l. (Literal Monotonicity)

If ϵ′ ⇒ l and ϵ ∪ {l} ⇒ l′, then ϵ ∪ ϵ′ ⇒ l′. (Literal Cut)

{p,¬p} ⇒ l′ for all positive literals p and lierals l′ (Literals Contradiction) □

Next, assume that the production inference relation (⇒)/2 satisfies Law 7 and states complete
causal knowledge that determines a set of causal worlds. Let ω be a world such that ω ̸⇒ p for a
proposition p ∈ P. In this case, we find either that ω is a causal world, that is, ω ⇒ ¬p, or that ω
is not a causal world, that is, ω ⇒ ⊥. All in all, we find that the causal world semantics of (⇒)/2
can be given through the negative completion of an atomic determinate causal theory.

Definition 2.3.14 (Negative Completion and Default Negation). The negative completion∆nc

of the atomic determinate causal theory ∆ is given by

∆nc := ∆ ∪ {¬p⇒ ¬p : p ∈ P}.

We say that a causal theory has default negation if it is the negative completion of all its atomic
causal rules and constraints.

To a causal theory ∆ with default negation, we associate the causal diagram graph(∆), which
is the directed graph on the propositions P that is given by drawing an arrow p → q if and only
if there is a non-default rule ϕ⇒ q ∈ ∆ with ϕ mentioning p or ¬p. Finally, we say that ∆ is an
acyclic causal theory if it is a causal theory with default negation whose causal diagram graph(∆)
is a directed graph without cycles.

Remark 2.3.8. Bochman (10) interprets default rules like ϕ ⇒ ϕ as stating that ϕ is self-
explained, i.e., factual knowledge about ϕ is automatically explained and therefore Aristotelian
knowledge. Intuitively, default rules state the knowledge a demonstration must start with.

As default rules play a special role in Bochman’s theory (10), only non-default rules induce
edges p → q in the causal diagram graph(∆). In particular, defaults such as p ⇒ p or ¬p ⇒ ¬p
do not induce loops in graph(∆).

If we decide to restrict ourselves to causal theories with default negation, we consider negations
as self-evident prior knowledge. This captures the modeling assumption that our parameters come
with a default state, which can, without loss of generality, be set to false.

Example 2.3.26. For instance, a schedule states the departure of trains or flights, and not when
nothing is departing, i.e., the default is that no trains or airplanes depart. Analogously, humans
are born as nonsmokers, and the event of them starting to smoke requires an explanation, or
houses usually do not burn, i.e., only a fire requires an explanation.

In modeling such scenarios, we initially employ atomic causal rules to identify the direct causes
of each proposition p. For example, we might assert arson ⇒ fire and lightning ⇒ fire to
indicate that arson or lightning can cause house fires. If these atomic causal rules do not explain
the proposition p, we interpret this as an explanation for the falsity of p, i.e., ¬p. In Bochman’s
framework (10), this principle is captured by forming the negative completion, which additionally
states a default ¬p ⇒ ¬p for all propositions p. Specifically, the default ¬fire ⇒ ¬fire implies
that houses do not burn unless there is an explanation for a house fire.

In a certain sense, default negation also models the dynamic nature of causality, where we
explain how values deviate from their defaults. In summary, causal theories with default negation
implement the following assumption.

2.3 Formalizing Causality, Knowledge, and Counterfactuals 63

Law 8 (Default Negation). Every proposition p ∈ P is false by default, which means that it is
considered false if it cannot be explained by causal reasoning. Hence, only positive literals in a
causal world require an explanation.

Further, we recall the relation between atomic causal theories and Pearl’s causal models (41)
in Section 2.3.1.

Definition 2.3.15 (Bochman Translation for Causal Models). LetM := (U,V,R,Error,Pa,F)
be a Boolean causal model. The Bochman translation ofM is given by the causal theory

∆(M) := ({F(v)⇒ v : v ∈ V} ∪ {u⇒ u : u ∈ U})nc

in the alphabet P := U ∪V.

Example 2.3.27. For the causal model M in Example 2.3.3 that is given by the external vari-
ables U := {sensor, rain} and the equations

sprinkler := sensor wet := rain ∨ sprinkler slippery := wet,

we obtain the Bochman translation ∆(M)

sensor ⇒ sensor ¬sensor ⇒ ¬sensor
rain⇒ rain ¬rain⇒ ¬rain
sensor ⇒ sprinkler ¬sprinkler ⇒ ¬sprinkler
rain ∨ sprinkler ⇒ wet ¬wet⇒ ¬wet
wet⇒ slippery ¬slippery ⇒ ¬slippery.

According to Theorem 2.3.2, determinate causal theories generalize the functional causal mod-
els of Pearl (41).

Corollary 2.3.4. The Bochman translation yields a bijection that assigns to every Boolean causal
modelM a causal theory ∆(M) that is equivalent to a causal theory with default negation. The the-
ory ∆(M) has the same causal diagram, i.e. graph(M) = graph(∆(M)). Furthermore, for every
situation u ofM the solutions extending u are exactly the causal worlds ω of ∆(M) with u ⊆ ω. □

As a consequence of Corollary 2.3.4, we can transfer Pearl’s notion of an intervention (41) to
causal theories with default negation, i.e. we see that causal reasoning and Aristotelian knowledge
are sufficient to represent external interventions.

Definition 2.3.16 (Intervention in Causal Theories). Assume that we are given a causal theory
with default negation ∆ and a truth value assignment i on a subset of propositions I ⊆ P such
that p⇒ p ̸∈ ∆ for all p ∈ I.

We define the modified causal theory ∆i by first erasing the atomic causal rules ϕ ⇒ p
explaining propositions p ∈ I and replace them with trivial explanations of the form ⊤ ⇒ p
whenever p ∈ i, i.e., pi = True.

Remark 2.3.9. Bochman (10) initially defines an intervention simply by erasing all rules ϕ⇒ (¬)p
for a proposition p ∈ P with (¬)p ∈ i and adding the rules ⊤ ⇒ l for all literals l ∈ i. In our
definition, we take into account that we do not consider interventions on external variables in
causal models. Furthermore, to ensure that our notion of intervention is well-behaved with the
Bochman translations in Definitions 2.3.15 and 2.3.17, we only add the trivial explanation ⊤ ⇒ l
if l cannot be explained by a default rule in ∆.

As desired, the notion of intervention in Definition 2.3.16 is consistent with the Bochman
translation in Definition 2.3.15.

64 2. Preliminaries

Proposition 2.3.5. Let M := (U,V,R,Error,Pa,F) be a Boolean causal model and let i be a
truth value assignment on a subset of internal propositions I ⊆ V. We find that

∆(Mi) \ {⊥ ⇒ p : p ∈ P} = ∆(M)i.

In particular, ∆(Mi) and ∆(M)i give rise to the same causal worlds.

Proof. First, we observe that the causal theories ∆(Mi) and ∆(M)i have the same defaults.
Let R ∈ ∆(Mi) be a non-default causal rule. We distinguish the following three cases:

i) The rule R is of the form ϕ ⇒ v for an internal variable v ̸∈ I. In this case, we conclude
that R is of the form F(v)⇒ v.

ii) The rule R is of the form ϕ ⇒ v for an internal variable v ∈ I with vi := True. In this
case, R is of the form ⊤ ⇒ v.

iii) The rule R is of the form ϕ ⇒ v for an internal variable v ∈ I with vi := False. In this
case, R is of the form ⊥ ⇒ v.

Let R ∈ ∆(M)i be a non-default causal rule. We distinguish the same three cases:

i) The rule R is of the form ϕ ⇒ v for an internal variable v ̸∈ I. In this case, we conclude
that R is of the form F(v)⇒ v.

ii) The rule R is of the form ϕ ⇒ v for an internal variable v ∈ I with vi := True. In this
case, R is of the form ⊤ ⇒ v.

ii) If v ∈ V with vi = False, by construction of ∆(M)i there is no causal rule of the form ϕ⇒ v
in ∆(M)i.

Hence, the desired result follows.

Example 2.3.28. If we manually turn the sprinkler off (or on) in Example 2.3.27, we obtain the
causal theory ∆(M)¬sprinkler (∆(M)sprinkler) below.

sensor ⇒ sensor ¬sensor ⇒ ¬sensor
rain⇒ rain ¬rain⇒ ¬rain
(⊤ ⇒ sprinkler) ¬sprinkler ⇒ ¬sprinkler
rain ∨ sprinkler ⇒ wet ¬wet⇒ ¬wet
wet⇒ slippery ¬slippery ⇒ ¬slippery

Further, we observe ∆(Msprinkler) = ∆(M)sprinkler and

∆(M¬sprinkler) \ {⊥ ⇒ sprinkler} = ∆(M)¬sprinkler.

Finally, we also recall the relation between causal theories with default negation and abductive
logic programs.

Definition 2.3.17 (Bochman Translation for Abductive Logic Programs). To an abductive logic
program P := (P,A, IC) we associate the Bochman translation

∆(P) := ({body(C)⇒ head(C) : C ∈ P ∪ IC} ∪ {u⇒ u : u ∈ A})nc .

2.3 Formalizing Causality, Knowledge, and Counterfactuals 65

Example 2.3.29. For the program P := (P,A, IC) of Example 2.2.38 consisting of the logic
program P

rain← cloudy ¬cloudy ⇒ ¬cloudy ¬cloudy ⇒ ¬cloudy
sprinkler ← ¬cloudy
wet← rain wet← sprinkler

slippery ← wet,

the abducibles A := {cloudy} and the integrity constraint IC := {⊥ ← ¬rain} we obtain the
following Bochman translation ∆(P).

cloudy ⇒ cloudy ¬cloudy ⇒ ¬cloudy
cloudy ⇒ rain ¬rain⇒ ¬rain
¬cloudy ⇒ sprinkler ¬sprinkler ⇒ ¬sprinkler
rain⇒ wet sprinkler ⇒ wet ¬wet⇒ ¬wet
wet⇒ slippery ¬slippery ⇒ ¬slippery
¬rain⇒ ⊥

According to Theorem 2.3.2, causal theories with default negation also generalize abductive
logic programming under the supported model semantics.

Corollary 2.3.6. The Bochman translation of abductive logic programs is a bijection that asso-
ciates to every abductive logic program a causal theory with default negation. The causal diagram
of the Bochman translation ∆(P) coincides with the dependence graph of the underlying logic pro-
gram, and the causal worlds of the Bochman translation ∆(P) are given by the supported models
of P. □

Remark 2.3.10. We further observe that the notion of intervention in a logic program of Sec-
tion 2.3.1 corresponds to the notion of intervention in a causal theory via the Bochman translation.

To conclude, causal production inference relations formalize causal reasoning as given by the
Laws 1, 2, 5 – 8. If we further follow Descartes and represent our causal reasoning through rules, we
obtain Bochman’s causal theories, which align with Pearl’s Boolean causal models and abductive
logic programming under the supported model semantics.

In Section 3.1, we begin by observing that Bochman’s logical theory of causality (10) yields
counterintuitive results once cyclic causal relationships are at play. This behavior is explained by
him allowing for cyclic and infinite causal explanations. To circumvent these cyclic and infinite
explanations, we extend Bochman’s causal theories (10) by explicitly stating the prior knowledge
an explanation can start with. This leads us to abductive causal theories, which happen to be
equivalent to abductive logic programs under the stable model semantics (27).

Further, in Section 3.2, we combine abductive causal theories with LogLinear models (46)
and obtain a formalism tailored to causal reasoning under uncertainty. Lastly, in Section 3.4, we
embed widespread frameworks of statistical relational artificial intelligence into this formalism.
Transferring our causal reasoning to these frameworks, we finally aim to unify causal reasoning
across the realm of statistical relational artificial intelligence.

66 2. Preliminaries

Chapter 3

Boolean Causal Reasoning under
Uncertainty

Statement of Contribution

This chapter builds on an article submitted for publication (52), Kilian Rückschloß contributed
the main idea, definitions, and proofs of all results except Lemma 3.1.5 and 3.1.6, while Felix
Weitkämper contributed the condition for consistent counterfactual reasoning in Law 10 and the
proofs of Lemma 3.1.5 and 3.1.6.

This chapter improves on that submission with:

• additional examples;

• more detailed proofs;

• a treatment of the non-ground case;

• a characterization of ProbLog as a fragment within weighted abductive logic programming;

• a characterization of ProbLog programs that define unique counterfactual probabilities;

• an adaptation of the twin-network method presented by Kiesel et al. (34);

• a discussion of causality in LPADs as presented by Rückschloß and Weitkämper (50).

68 3. Boolean Causal Reasoning under Uncertainty

In the acyclic case, the Corollaries 2.2.4, 2.3.4, and 2.3.6 show that Bochman’s causal the-
ories, Pearl’s functional causal models, and abductive logic programs are essentially equivalent
formalisms (10). In the cyclic case, however, Pearl’s causal models may not be well-defined. On
the logic programming side, we have to consider different proposals for the semantics of a logic
program, i.e., the supported model semantics (25) for acyclic logic programs, the minimal model
semantics (59) for positive logic programs, and the stable model semantics (27) for general logic
programs. The following section shows that abductive logic programming (22) under the stable
model semantics (27) is the appropriate framework to capture everyday Boolean causal reasoning
with default negation.

3.1 Deterministic Causal Reasoning

Let us begin by taking a closer look at Bochman’s theory of causality (10) as presented in Sec-
tion 2.3, specifically in the cyclic case.

Example 3.1.1. Let jakob and kilian denote two friends, Jakob and Kilian. Furthermore,
spontaneously smokes(jakob) and spontaneously smokes(kilian) indicate that Jakob and Kilian
start to smoke spontaneously. By smokes(jakob) and smokes(kilian), we mean that Jakob and
Kilian are smoking, respectively. Assuming that humans usually do not smoke as well as that
Jakob smokes if Kilian smokes and vice versa, we would model this story in the following causal
theory ∆ with default negation:

spontaneously smokes(jakob)⇒ spontaneously smokes(jakob) (3.1)

spontaneously smokes(kilian)⇒ spontaneously smokes(kilian) (3.2)

spontaneously smokes(jakob)⇒ smokes(jakob) (3.3)

spontaneously smokes(kilian)⇒ smokes(kilian) (3.4)

smokes(kilian)⇒ smokes(jakob) (3.5)

smokes(jakob)⇒ smokes(kilian) (3.6)

¬spontaneously smokes(jakob)⇒ ¬spontaneously smokes(jakob)
¬spontaneously smokes(kilian)⇒ ¬spontaneously smokes(kilian)
¬smokes(jakob)⇒ ¬smokes(jakob)
¬smokes(kilian)⇒ ¬smokes(kilian)

According to Theorem 2.3.2, we would then obtain a causal world

ω := {smokes(jakob), smokes(kilian)},

where Kilian and Jakob smoke even if nobody smokes spontaneously. We obtain this flaw since
Bochman’s framework allows for cyclic explanations. The explanation for smokes(kilian) in ω is,
for instance, given by smokes(kilian) ⇒ smokes(jakob) and smokes(jakob) ⇒ smokes(kilian),
i.e., Kilian smokes because Jakob smokes, who smokes because Kilian does. We do not accept
these cyclic arguments in our daily causal reasoning.

Example 3.1.1 illustrates a potential drawback of Bochman’s approach (10), where circular
“explanations” may arise in some cases, leading to counterintuitive results. To address this issue,
we propose asserting the principle of acyclicity, avoiding cyclic arguments by ensuring that all
causal explanations start from specified self-explained a priori knowledge.

Law 9 (Principle of Acyclicity). Causal explanations start from self-evident a priori knowledge.

Interestingly, the principle of acyclicity appears to be relevant only in the Boolean case, as
demonstrated by the following example of Pearl (41) and Goldberger (29).

3.1 Deterministic Causal Reasoning 69

Example 3.1.2. Let us consider q as the quantity of household demand for a product, such as
espresso machines. We use p to denote the price per unit (that is, per espresso machine), i for
household income, w for the wage rate of producing one espresso machine, and u1/2 to model
some external variables not explicitly considered in the model. An increase in price p or income i
leads to a decrease or increase, respectively, in the quantity of household demand q. In contrast,
a higher quantity of household demand q or a higher wage rate w result in an increase in price p.
Therefore, we model the espresso machine market with the following causal model

q := α · p+ β · i+ u1 p := γ · q + δ · w + u2.

Here, p and q are real-valued internal variables, while i, w, u1 and u2 are real-valued external
variables, and α, β, γ, δ ∈ R are rigid constants. To determine the resulting price p′ and the
quantity of household demand q′, we solve the system of equations to obtain the following.

q′ =
αδw + αu2 + βi+ u1

1− αγ
p′ =

γβi+ γu1 + δw + u2
1− αγ

In particular, neither the resulting price p′ nor the quantity of household demand q′ require
additional justification in terms of external self-evident a priori knowledge.

From the principle of acyclicity in Law 9 we conclude that causal reasoning is of an abductive
nature. Therefore, we propose to formalize causal reasoning in abductive causal theories defined
as follows.

Definition 3.1.1 (Abductive Causal Theory). We define an abductive causal theory to be
a tuple T := (∆,A) consisting of a causal theory ∆ and a set of formulas A, called abducibles,
such that there is no causal rule ϕ ⇒ ψ ∈ ∆ and no abducible ρ ∈ A with ψ |= ρ. We call T
atomic or literal if ∆ is an atomic or literal causal theory and if A is a set of literals. In this
case, a pure abducible u ∈ A is a proposition with ¬u ∈ A.

Deviating from Bochman (10), we say that an atomic causal rule b1 ∧ ... ∧ bn ⇒ h is positive
if b1, ..., bn, h ∈ P are propositions. A causal theory ∆ is positive if it only mentions positive
causal rules. Finally, we call an atomic abductive causal theory T := (∆,A) positive if ∆ is a
positive causal theory.

Example 3.1.3. If ∆ is the causal theory consisting of Rules (3.3)-(3.6) from Example 3.1.1

spontaneously smokes(jakob)⇒ smokes(jakob)

spontaneously smokes(kilian)⇒ smokes(kilian)

smokes(kilian)⇒ smokes(jakob),

smokes(jakob)⇒ smokes(kilian)

we specify the abducibles

A := {spontaneously smokes(X),¬spontaneously smokes(X),¬smokes(X)}X∈{kilian,jakob}

to obtain a positive abductive causal theory T := (∆,A).

According to the principle of acyclicity in Law 9, every causal world of an abductive causal
theory should be explained by its abducibles. This leads us to the following definition.

Definition 3.1.2 (Exact Theories and Causal Worlds). The abductive closure of an abductive
causal theory T := (∆,A) is the causal theory ∆(T) := ∆ ∪ {l ⇒ l : l ∈ A}. Further, the con-
sequence operator C of T is the consequence operator of the abductive closure ∆(T) of T . An
exact theory Φ of T is an exact theory of the abductive closure ∆(T) that satisfies Φ = C(Φ ∩ A).
Finally, a causal world ω of T is an exact theory that is a world. If Φ is an exact theory, the
(causal) explanation ϵ := ϵ(Φ) := Φ ∩ A of Φ is the subset of all abducibles in Φ.

70 3. Boolean Causal Reasoning under Uncertainty

Example 3.1.4. For the abductive causal theory T := (∆,A) of Example 3.1.3 where

A := {spontaneously smokes(X),¬spontaneously smokes(X),¬smokes(X)}X∈{kilian,jakob}
∆ := {spontaneously smokes(jakob)⇒ smokes(jakob),

spontaneously smokes(kilian)⇒ smokes(kilian),

smokes(kilian)⇒ smokes(jakob),

smokes(jakob)⇒ smokes(kilian)},

we obtain the following causal theory of Example 3.1.1 as abductive closure.

spontaneously smokes(jakob)⇒ spontaneously smokes(jakob)

spontaneously smokes(kilian)⇒ spontaneously smokes(kilian)

spontaneously smokes(jakob)⇒ smokes(jakob)

spontaneously smokes(kilian)⇒ smokes(kilian)

smokes(kilian)⇒ smokes(jakob)

smokes(jakob)⇒ smokes(kilian)

¬spontaneously smokes(jakob)⇒ ¬spontaneously smokes(jakob)
¬spontaneously smokes(kilian)⇒ ¬spontaneously smokes(kilian)
¬smokes(jakob)⇒ ¬smokes(jakob)
¬smokes(kilian)⇒ ¬smokes(kilian)

Further, the causal worlds are given by

{spontaneously smokes(X), smokes(X) : X ∈ {kilian, jakob}}
{spontaneously smokes(jakob), smokes(X) : X ∈ {kilian, jakob}}
{spontaneously smokes(kilian), smokes(X) : X ∈ {kilian, jakob}}
{}.

Fortunately, the causal worlds of an abductive causal theory can be characterized as follows.

Proposition 3.1.1. Let T := (∆,A) be a literal abductive causal theory, and let ϵ ⊆ A such
that C(ϵ) is a consistent set of propositional formulas. In this case, we find that C(ϵ) is an exact
theory of T with explanation ϵ. In particular, a world ω is a causal world of T with explana-
tion ϵ = ω ∩ A if and only if ω = C(ϵ).

Proof. According to Theorem 2.3.2, ϵ⇒ u cannot be derived from ∆(T) for any abducible u ∈ A \ ϵ.
Hence, we only need to show that C(ϵ) is an exact theory of the abductive closure ∆(T), i.e.

C(C(ϵ)) = C(ϵ).

Since ϵ ⊆ A is a subset of the defaults in the abductive closure ∆(T), we find ϵ ⊆ C(ϵ), i.e., from
the monotonicity of C and Theorem 2.3.1 we derive C(C(ϵ)) ⊆ C(ϵ) ⊆ C(C(ϵ)).

As in Section 2.3, we restrict ourselves to reasoning on causal theories with default negation
that pin down whole worlds exactly, i.e., that satisfy Laws 7 and 8. Let T := (∆,A) be an
abductive causal theory. According to Law 7, all worlds ω are either exact theories or falsified,
meaning that ⊥ ∈ C(ω ∩ A). Furthermore, the principle of default negation in Law 8 means that
every proposition p ∈ P is considered to be false if it cannot be explained by causal reasoning,
i.e., ¬p ∈ A is an abducible.

3.1 Deterministic Causal Reasoning 71

Definition 3.1.3 (Default Negation). The negative completion of an atomic abductive causal
theory T := (∆,A) is given by T nc := (∆,A ∪ {¬p : p ∈ P}). We say that an abductive causal
theory T has default negation if it is the negative completion of an atomic abductive causal
theory. If T is also the negative completion of a positive abductive causal theory, we call T a
positive abductive causal theory with default negation.

Example 3.1.5. The abductive causal theory T = (∆,A) in Example 3.1.3 where

A := {spontaneously smokes(X),¬spontaneously smokes(X),¬smokes(X)}X∈{kilian,jakob}
∆ := {spontaneously smokes(jakob)⇒ smokes(jakob),

spontaneously smokes(kilian)⇒ smokes(kilian),

smokes(kilian)⇒ smokes(jakob),

smokes(jakob)⇒ smokes(kilian)},

is derived as the negative completion of the atomic abductive causal theory that consists of the
causal theory ∆ and of the abducibles

{spontaneously smokes(jakob), spontaneously smokes(kilian)}.

Abductive causal theories with default negation can be used as a language for the causal models
of Pearl (41) introduced in Section 2.3.1.

Definition 3.1.4 (Bochman Transformation). The Bochman transformation of a Boolean
causal modelM := (U,V,Error,Pa,F) is the negative completion T (M) of the abductive causal
theory that contains the causal rule FV (pa(V), error(V)) ⇒ V for every internal variable V ∈ V
and has the abducibles U.

Example 3.1.6. LetM := (U,V,Error,Pa,F) be the causal model of Example 2.3.3.

U := {sensor, rain}

M : sprinkler := sensor wet := rain ∨ sprinkler slippery := wet

In this case, the Bochman transformation T (M) is the abductive causal theory that consists of
the causal theory

∆ := {sensor ⇒ sprinkler, rain ∨ sprinkler ⇒ wet, wet⇒ slippery}

and the abducibles

A := {sensor, rain,¬sensor,¬sprinkler,¬rain,¬wet,¬slippery}.

Remark 3.1.1. Assuming that the functions FV (pa(V), error(V)) are in disjunctive normal form
and applying (Or) of Definition 2.3.7, we see that the Bochman transformation T (M) can be
translated to an abductive causal theory with default negation while preserving the causal worlds.

Example 3.1.7. We can translate the causal theory ∆ in Example 3.1.6 to the atomic theory

sensor ⇒ sprinkler

rain⇒ wet

sprinkler ⇒ wet

wet⇒ slippery.

As desired, the causal worlds ω produced by the Bochman transformation T (M) of a causal
modelM correspond to solutions ofM.

72 3. Boolean Causal Reasoning under Uncertainty

Theorem 3.1.2. IfM is a Boolean causal model, every causal world ω of the Bochman transfor-
mation T (M) yields a solution ofM.

Proof. This result is a direct consequence of Theorem 2.3.2, as every causal world of T (M) is a
model of the completion of the corresponding abductive closure.

Through the Bochman transformation, abductive causal theories define the feasible solutions
of Boolean causal models that align with the Laws 1, 2, 5 – 9. Furthermore, the Bochman
transformation canonically extends the treatment of external interventions from causal models to
literal abductive causal theories.

Definition 3.1.5 (Intervention). Let T := (∆,A) be a literal abductive causal theory, and let i
be a truth value assignment on a set of propositions I ⊆ P, not containing pure abducibles. To
represent the intervention of forcing i, we build the modified theory Ti := (∆i,A) that results
from T by replacing all rules ϕ⇒ l where the underlying proposition p ∈ P of the literal l ∈ {p,¬p}
lies in I, i.e., p ∈ I, with the rules ⊤ ⇒ l, l ∈ i.

Example 3.1.8. Recall the abductive causal theory T := (∆,A) in Example 3.1.3 where

A := {spontaneously smokes(X),¬spontaneously smokes(X),¬smokes(X)}X∈{kilian,jakob}
∆ := {spontaneously smokes(jakob)⇒ smokes(jakob),

spontaneously smokes(kilian)⇒ smokes(kilian),

smokes(kilian)⇒ smokes(jakob),

smokes(jakob)⇒ smokes(kilian)}.

Assume we are Kilian and start smoking because we are influenced by Richard, another friend not
modeled in T := (∆,A). Hence, we need to intervene in T according to i := {smokes(kilian)}
and obtain the modified theory Ti := (∆i,A), where

A := {spontaneously smokes(X),¬spontaneously smokes(X),¬smokes(X)}X∈{kilian,jakob}
∆i := {spontaneously smokes(jakob)⇒ smokes(jakob),

⊤ ⇒ smokes(kilian),

smokes(kilian)⇒ smokes(jakob)}.

As expected, the concept of intervention, defined in Definition 3.1.5, behaves consistently with
the Bochman transformation.

Proposition 3.1.3. For any Boolean causal modelM := (U,V,Error,Pa,F) and any truth value
assignment i on the internal variables I ⊆ V, we find that T (Mi) and T (M)i have the same causal
worlds.

Proof. This result stems from the observation that the Bochman transformation, defined in Defi-
nition 3.1.4, essentially replaces the “:=” symbol with the “⇒” symbol.

As announced at the beginning of this section, we now see how abductive causal theories with
default negation correspond to abductive logic programming under the stable model semantics.

Definition 3.1.6 (Bochman Transformation). The Bochman transformation of an atomic
abductive causal theory T := (∆,A) with default negation is defined to be the abductive logic
program P(T) := (P,A ∩P, ∅), where

P := {p← ϕ| ϕ⇒ p ∈ ∆ atomic causal rule}.

3.1 Deterministic Causal Reasoning 73

Example 3.1.9. Recall the abductive causal theory T := (∆,A) in Example 3.1.3 where

A := {spontaneously smokes(X),¬spontaneously smokes(X),¬smokes(X)}X∈{kilian,jakob}
∆ := {spontaneously smokes(jakob)⇒ smokes(jakob),

spontaneously smokes(kilian)⇒ smokes(kilian),

smokes(kilian)⇒ smokes(jakob),

smokes(jakob)⇒ smokes(kilian)}.

The Bochman transformation of T is the abductive logic program P(T) := (P,A, ∅) consisting of
the logic program

P : smokes(jakob)← spontaneously smokes(jakob)

smokes(kilian)← spontaneously smokes(kilian)

smokes(jakob)← smokes(kilian)

smokes(kilian)← smokes(jakob)

and the abducibles A := {spontaneously smokes(X) : X ∈ {jakob, kilian}}.

To prove that the causal worlds of an abductive causal theory with default negation T cor-
respond to stable models of the Bochman transformation P(T), we investigate the causal world
semantics of abductive causal theories with default negation in greater detail.

Definition 3.1.7 (Reduct). Let T := (∆,A) be an abductive causal theory with default negation,
and let ω ⊆ P be a world. We define the reduct Tω := (∆ω,A) to be the positive abductive causal
theory with default negation obtained by first erasing all atomic causal rules b1∧...∧bn ⇒ p from ∆
if there is a negative literal bi := ¬pi, 1 ≤ i ≤ n with ω |= pi, and then erasing all negative literals
in the causes of the remaining rules. If P := (P,A, IC) is an abductive logic program, we define
its reduct by Pω := (Pω,A, IC).

As intended, the Bochman transformation respects our notion of reduct in causal logic.

Lemma 3.1.4. For every abductive causal theory with default negation T and every world ω we
have

P(Tω) = P(T)ω. □

Further, the notion of a reduct is also well-behaved with the causal world semantics.

Lemma 3.1.5. Let T be an abductive causal theory with default negation and let ω be a world.
In this case, ω is a causal world of T if and only if it is a causal world of the reduct Tω.

Proof. Assume ω is a causal world of the theory T with explanation ϵ := ω ∩ A. According to
Proposition 3.1.1 and Theorem 2.3.3, we find for every literal l that l ∈ ω if and only if ϵ ⇒ l is
derivable from ∆(T) and the following rules for sets of literals ϵ, ϵ′ and literals l, l′:

If ϵ⇒ l, then ϵ ∪ ϵ′ ⇒ l. (Literal Monotonicity)

If ϵ′ ⇒ l and ϵ ∪ {l} ⇒ l′, then ϵ ∪ ϵ′ ⇒ l′. (Literal Cut)

{p,¬p} ⇒ l′ for all positive literals p and lierals l′ (Literal Contradiction)

We want to show that ω is a causal world of the reduct Tω. This is the case if for every literal l
we find l ∈ ω if and only if we can derive ϵ⇒ l from ∆(Tω) and these axioms.

Let l be a literal. Assume l ∈ ω, that is, there is a proof of ϵ ⇒ l from ∆(T). We can
derive every atomic rule b1 ∧ ... ∧ bn ⇒ q ∈ ∆(T) for which ω |= b1, ..., bm by (Strengthening)
in Definition 2.3.5 from ∆(Tω). We further observe that rules of the form b1 ∧ ... ∧ bm ⇒ q for

74 3. Boolean Causal Reasoning under Uncertainty

which ω ̸|= bi for some i cannot occur in the proof of ϵ ⇒ l. Indeed, assume without loss of
generality that i = 1. Then every subsequent formula below b1 ∧ ... ∧ bm ⇒ q in the proof tree
would be of the form b1 ∧ c1 ∧ ...∧ ck ⇒ p since (Literal Monotonicity) merely adds literals to the
causes and b1 cound only be removed by (Literal Cut) if ϵ ⇒ b1 would be derivable from ∆(T).
However, in this case b1 ∈ ω, which is a contradiction to ω being a world. Note that with the
same argument we find that (Literal Contradiction) cannot be applied in a proof of ϵ⇒ l.

Now assume ϵ ⇒ l is derivable from ∆(Tω). We want to show that l ∈ ω, that is, ϵ ⇒ l is
derivable from ∆(T). To this end, we observe that without loss of generality every positive rule
in p1 ∧ ...∧ pn ⇒ q ∈ ∆(Tω) corresponds to a rule in ¬p′1 ∧ ...∧¬p′m ∧ p1 ∧ ...∧ pn ⇒ q ∈ ∆(T) for
positive literals p1, ..., pn, p

′
1, ..., p

′
m such that ω ̸|= p′i for all 1 ≤ i ≤ m. Thus, p′i ̸∈ ω and ¬p′i ∈ ω

as ω is a world. This means that ϵ ⇒ ¬p′i is derivable from ∆(T) as and thus applying (Literal
Cut), we find ϵ∪{p1, ..., pn} ⇒ q can be deriven from ∆(T). Hence, we can derive ϵ⇒ l from ∆(T).

Next, assume that ω is a causal world of the reduct Tω with explanation ϵ := ω ∩ A, that
is, for every literal l we find that l ∈ ω if and only if ϵ ⇒ l is derivable from ∆(Tω) and the
aforementioned axioms. We want to show that ω is a causal world of T , that is, for a literal l we
have l ∈ ω if and only if ϵ⇒ l is derivable from ∆(T).

Let l be a literal. Assume l ∈ ω, i.e., ϵ⇒ l is derivable from ∆(Tω). So as previously, take an
atomic rule b1 ∧ ... ∧ bn ⇒ q ∈ ∆(T) with ω |= bi for all negative literals bi, 1 ≤ i ≤ n. In this
case, we find that ϵ⇒ bi is derivable from ∆(T) as bi ∈ A and therefore bi ∈ ϵ. We conclude with
(Literal Cut) that ϵ⇒ l is derivable from ∆(T).

Finally, assume that ϵ⇒ l is derivable from ∆(T). We want to show that l ∈ ω, i.e., that ϵ⇒ l
is derivable from ∆(Tω). First, all rules in ∆(Tω) correspond to rules in ∆(T) by (Strengthening)
in Definition 2.3.5. Let b1 ∧ ... ∧ bn ⇒ l ∈ ∆(T) be a rule that cannot be derived by (Strength-
ening) from ∆(Tω). In this case, we may without loss of generality assume that b1 := ¬p1 is a
negative literal with ω |= p1. Hence, we find that ϵ ⇒ p1 is derivable from ∆(Tω). Further, by
(Literal Contradiction) and (Literal Monotonicity), we find that {p1, b1, ..., bn} ⇒ p is derivable
from ∆(Tω). Hence, we apply (Literal Cut) and obtain ϵ ∪ {b1, ..., bn} ⇒ p. In summary, we
conclude that ϵ⇒ l is derivable from ∆(Tω) and l ∈ ω as desired.

Lastly, the Bochman transformation behaves well on abductive causal theories that correspond
to positive programs.

Lemma 3.1.6. Let T := (∆,A) be a positive abductive causal theory with default negation, and
let P := P(T) := (P,A, ∅) be the Bochman transformation of T . In this case, every stable model
of P(T) is also a causal world of T , and vice versa.

Proof. Let ω be a causal world of T := (∆,A) with explanation ϵ := A ∩ ω. In this case, Theo-
rem 2.3.2 ensures that ω is a supported model of P. Furthermore, according to Theorem 2.3.3,
for a positive literal p we find p ∈ ω if and only if ϵ ⇒ p is derivable from ∆(T) using (Literal
Monotonicity) and (Literal Cut). As literal monotonicity merely adds literals to the causes of
rules, we conclude that we have a proof of ϵ⇒ p only using (Literal Cut), which is equivalent to
a proof of p in terms of the immediate consequence operator of P ∪ (ϵ ∩ A).

Now, assume ω is a stable model of P. Again, we have a proof for every proposition p ∈ ω in
terms of the immediate consequence operator of P ∪ ϵ, i.e., ϵ ⇒ p is derivable from ∆(T) using
(Literal Cut). Hence, ω is a causal world of T as desired.

Combining Lemma 3.1.4, Lemma 3.1.5, and Lemma 3.1.6 yields the main result of this section.

Theorem 3.1.7. The Bochman transformation is a bijection, translating every abductive causal
theory with default negation T to an abductive logic program P(T) such that the causal worlds
of T are exactly the stable models of P(T). □

Theorem 3.1.7 establishes the equivalence between abductive causal theories with default nega-
tion and general abductive logic programs without integrity constraints, underscoring their ver-
satility in addressing diverse scenarios. Abductive logic programming under the stable model
semantics encompasses various forms of causal reasoning, including those described by Laws 1, 2,

3.1 Deterministic Causal Reasoning 75

and 5 – 9. This equivalence also holds for all types of abductive logic programs, i.e. acyclic,
positive, stratified programs, etc., highlighting the broad applicability of our analysis in providing
a causal interpretation for general abductive logic programs.

The Logical and Explanatory Content of Causal Reasoning

As Bochman (10), we also observe that causal reasoning as formalized in abductive causal theories
can be separated into logical and explanatory components.

Definition 3.1.8 (Logical and Explanatory Content). The logical content of a ruleR := (ϕ⇒ ψ)
is the implication logic(R) := (ϕ → ψ). For a causal theory ∆, the logical content is defined
as logic(∆) := {logic(R) : R ∈ ∆}. The explanatory content of ∆ for a world ω is the causal
theory ∆|ω := {R ∈ ∆ : ω |= logic(R)}. If T := (∆,A) is an abductive causal theory, the logical
content is given by logic(T) := logic(∆), and the explanatory content is T |ω := (∆|ω,A). In
this case, C|ω denotes the corresponding consequence operator.

Example 3.1.10. Recall the abductive causal theory T := (∆,A) in Example 3.1.3 where

A := {spontaneously smokes(X),¬spontaneously smokes(X),¬smokes(X)}X∈{kilian,jakob}
∆ := {spontaneously smokes(jakob)⇒ smokes(jakob),

spontaneously smokes(kilian)⇒ smokes(kilian),

smokes(kilian)⇒ smokes(jakob),

smokes(jakob)⇒ smokes(kilian)}.

Further, let
ω := {spontaneously smokes(kilian), smokes(kilian)}

be the world where Kilian (spontaneously) smokes, while Jakob is not smoking (spontaneously).
The explanatory content T |ω is obtained by removing the rule smokes(kilian)⇒ smokes(jakob)
from ∆. The logical content, denoted as logic(T), is obtained by replacing the “⇒” symbol in ∆
with the implication “→”.

The explanatory content of a causal theory ∆ allows us to define the following event.

Definition 3.1.9 (Decidability). Let T := (∆,A) be an abductive causal theory, and let ω be a
world. We say that a formula ϕ is (causally) decidable in ω and write ω |= decides(ϕ), if

ϕ ∈ C|ω(ω ∩ A) or ¬ϕ ∈ C|ω(ω ∩ A).

We call ω a logical world of T and write logicT (ω) = logic(ω) if ω |= logic(T) and we call ω
an explainable world of T if ω causally decides all formulas ϕ, that is, ω |= decides(ϕ) for all
formulas ϕ.

We define the event logic(T) that T is logical to be the set of all logical worlds ω, i.e.,

logic(T) := {ω world: ω |= logic(T)}.

Finally, we define the event that T explains everything to be the set of all explainable worlds,
i.e.,

explains(T) := {ω world: ω |= decides(ϕ) for all formulas ϕ}.

Example 3.1.11. Recall the abductive causal theory T := (∆,A) in Example 3.1.3 where

A := {spontaneously smokes(X),¬spontaneously smokes(X),¬smokes(X)}X∈{kilian,jakob}
∆ := {spontaneously smokes(jakob)⇒ smokes(jakob),

spontaneously smokes(kilian)⇒ smokes(kilian),

smokes(kilian)⇒ smokes(jakob),

smokes(jakob)⇒ smokes(kilian)}.

76 3. Boolean Causal Reasoning under Uncertainty

The theory T decides every formula in the world

ω := {spontaneously smokes(kilian), smokes(kilian)}

of Example 3.1.10. Hence, ω is an explainable world even though it is not a causal world.

As needed, the causal worlds of abductive causal theories can be characterized as follows.

Proposition 3.1.8. A world ω is a causal world of an abductive causal theory T if and only if it
is logical and explainable, i.e., Causal(T) := logic(T) ∩ explains(T).

Proof. Assume ω is a causal world of T . In this case, Theorem 2.3.2 yields ω |= logic(T), i.e., ω
is a logical world of T . In particular, we find T |ω = T and every formula ϕ is explainable since ω
is an exact theory that is a world. Hence, ω is an explainable world.

Next, assume ω is a world that is logical and explainable with respect to T . Hence, we
find ω |= logic(T) and C|ω(ω ∩A) = ω. Again, we find T |ω = T and ω is a causal world of T .

Non-Ground Causal Reasoning

We aim to extend (abductive) causal theories to capture relations in a given domain, providing
causal interpretations for non-ground abductive logic programs. To define semantics through
grounding, we represent these relations using quantifier-free formulas ϕ in the fragment of relational
first-order logic, which allows no quantifiers, no function symbols, and only finitely many constant
and predicate symbols. These expressions are combined to form causal rules of the form ϕ ⇒ ψ.
Similarly to the propositional case, we do not allow nested expressions of the form ϕ⇒ ψ ⇒ ρ⇒
A finite set of causal rules constitutes a causal theory. Similarly to non-ground logic programs,
we proceed by grounding to obtain the corresponding semantics of these causal theories.

Remark 3.1.2. Informally, a causal rule ϕ ⇒ ψ could also be interpreted as ∀Y1
...∀Yn

ϕ ⇒ ψ,
where var(ϕ) ∪ var(ψ) := {Y1, ..., Yn}. This interpretation arises from the fact that the Herbrand
models of the corresponding universally closed formulas in prenex normal form can be obtained
by grounding.

Let A be a relational first-order alphabet. A causal rule is an expression R := (ϕ⇒ ψ) for
quantifier-free formulas ϕ and ψ. For a ground substitution γ we define the corresponding ground
instance to be Rγ := (ϕγ ⇒ ψγ). Furthermore, a causal theory ∆ is a finite set of causal rules,
and its grounding ∆̄ is defined as the set of all ground instances of rules in ∆. An exact theory
in the sense of Bochman (10) is then an exact theory of the grounding ∆̄. Finally, the causal
theory ∆ has default negation if its grounding ∆̄ has.

Example 3.1.12. Let A := (C,P) be the relational alphabet with constants C := {jakob, kilian}
and predicates P := {smokes, spontaneously smokes}, where each predicate has arity one. We
can consider the following casual theory ∆.

spontaneously smokes(X)⇒ spontaneously smokes(X)

spontaneously smokes(X)⇒ smokes(X)

smokes(X)⇒ smokes(Y)

¬spontaneously smokes(X)⇒ ¬spontaneously smokes(X)

¬smokes(X)⇒ ¬smokes(X)

3.1 Deterministic Causal Reasoning 77

Further, we obtain the grounding ∆̄ below.

spontaneously smokes(jakob)⇒ spontaneously smokes(jakob)

spontaneously smokes(kilian)⇒ spontaneously smokes(kilian)

spontaneously smokes(jakob)⇒ smokes(jakob)

spontaneously smokes(kilian)⇒ smokes(kilian)

smokes(jakob)⇒ smokes(jakob)

smokes(kilian)⇒ smokes(jakob)

smokes(jakob)⇒ smokes(kilian)

smokes(kilian)⇒ smokes(kilian)

¬spontaneously smokes(jakob)⇒ ¬spontaneously smokes(jakob)
¬spontaneously smokes(kilian)⇒ ¬spontaneously smokes(kilian)
¬smokes(jakob)⇒ ¬smokes(jakob)
¬smokes(kilian)⇒ ¬smokes(kilian)

Hence, as in Example 3.1.1, we obtain that

ω := {smokes(jakob), smokes(kilian)},

is a causal world of ∆.

Similarly to the propositional case, we extend non-ground causal theories with specified prior
knowledge A, which serves as the starting point for explanations. This again results in abduc-
tive causal theories. To define the semantics through grounding, we again represent this prior
knowledge using quantifier-free formulas in relational first-order logic.

Next, an abductive causal theory T := (∆,Ab) is a pair of a causal theory ∆ and a set of
quantifier-free formulas Ab, called abducibles such that the grounding T̄ := (∆̄, Āb) is an
abductive causal theory. A causal world ω of T is then a causal world of the grounding T̄ .
Finally, we say that T has default negation if its grounding T̄ has.

Example 3.1.13. In the alphabet A of Example 3.1.12 we can consider the abductive causal
theory T := (∆,Ab), consisting of the causal theory

∆ : spontaneously smokes(X)⇒ smokes(X)

smokes(X)⇒ smokes(Y)

and the abducibles

Ab := {spontaneously smokes(X),¬spontaneously smokes(X),¬smokes(X)}.

Finally, the causal worlds of T are the following worlds of Example 3.1.4.

{spontaneously smokes(X), smokes(X) : X ∈ {kilian, jakob}}
{spontaneously smokes(jakob), smokes(X) : X ∈ {kilian, jakob}}
{spontaneously smokes(kilian), smokes(X) : X ∈ {kilian, jakob}}
{}

As the semantics of (abductive) causal theories and (abductive) logic programs is defined by
grounding, Corollary 2.3.6 and Theorem 3.1.7 remain valid in the non-ground case.

78 3. Boolean Causal Reasoning under Uncertainty

3.2 Weighted Causal Reasoning

As the LogLinear models of Richardson and Domingos (46) extend propositional logic by un-
certainty, we now extend literal abductive causal theories by unnormalized degrees of certainty.
Hereby, we relate the uncertainty to the logical content while the explanations remain determinis-
tic. Hence, as Bochman (10), we still consider causal reasoning as a binary relation on propositional
formulas while extending the underlying logical content by degrees of certainty. Furthermore, we
distinguish between the uncertainty in the abducibles, i.e., in the input data, and the uncertainty
about the causal rules in our theory. Fix a propositional alphabet P.

Definition 3.2.1 (Weighted Abductive Causal Theory). Aweighted causal rule (w,R) consists
of a weight w ∈ R ∪ {∞} and a literal causal rule R. A weighted causal theory ∆ then is a
finite set of weighted causal rules. Finally, the explanatory content of a weighted causal theory
is the causal theory EXP(∆) := {R : ∃w(w,R) ∈ ∆}.

A weighted abductive causal theory T := (∆,A,Φ) consists of a weighted causal the-
ory ∆, a set of literals A, called abducibles and an a priori knowledge, which is a LogLinear
model PRIOR(T) := Φ in the pure abducibles, i.e., in all positive literals p ∈ A with ¬p ∈ A. The
constraint part of T is the LogLinear model

CONST(T) := {(w, logic(R)) : (w,R) ∈ ∆}

and the explanatory part of T is the abductive causal theory

EXP(T) := (EXP(∆),A).

Remark 3.2.1. We restrict ourselves to considering only literal causal rules in weighted abductive
causal theories. In particular, we do not permit constraints, as their semantics within weighted
abductive logic programming does no longer coincide with observing, i.e., conditioning on events.

Example 3.2.1. Assume that we are uncertain whether Jakob and Kilian influence each other
to smoke in the abductive causal theory T := (∆,A) of Example 3.1.1.

A := {spontaneously smokes(X),¬spontaneously smokes(X),¬smokes(X)}X∈{kilian,jakob}
∆ := {spontaneously smokes(jakob)⇒ smokes(jakob),

spontaneously smokes(kilian)⇒ smokes(kilian),

smokes(kilian)⇒ smokes(jakob),

smokes(jakob)⇒ smokes(kilian)}

Further, assume they both independently start to smoke spontaneously, with a probability of 0.2.
We may model the whole situation with the weighted abductive causal theory T := (∆,A,Φ)
consisting of the weighted causal theory ∆, given by

(∞, spontaneously smokes(jakob)⇒ smokes(jakob))

(∞, spontaneously smokes(kilian)⇒ smokes(kilian)

(ln(2), smokes(kilian)⇒ smokes(jakob))

(ln(2), smokes(jakob)⇒ smokes(kilian)),

the abducibles

A := {spontaneously smokes(X),¬spontaneously smokes(X),¬smokes(X): X ∈ {jakob, kilian}}

and the a priori knowledge

Φ := {(ln(0.2), spontaneously smokes(X)), (ln(0.8),¬spontaneously smokes(X))}X∈{jakob,kilian}.

3.2 Weighted Causal Reasoning 79

To obtain a semantics for weighted abductive causal theories T, we employ Parameterization 4
used in the LogLinear models of Section 2.2.2. However, this time, similar to the P-log semantics,
we also account for the explanations provided by the explanatory part EXP(T), applying the
principle of indifference in Law 3:

Informally, we interpret a weighted abductive causal theory T := (∆,A,Φ) as a two-step
procedure. First, the LogLinear model Φ describes a random experiment in which we choose a
possible explanation ϵ, that is, self-evident factual knowledge about the world outside the model
that gives rise to a set of possible Aristotelian knowledge

Ω|ϵ := {ω ⊇ ϵ explainable world of EXP(T)}.

Further, the weights in ∆ correspond to weak constraints in CONST(T) and express our degree
of belief in a concrete world ω ∈ Ω|ϵ. In particular, they express our degree of belief that ω is a
logical world. Finally, if Ω|ϵ = ∅, we conclude that the factual knowledge ϵ is inconsistent with
causal reasoning and conclude that ϵ cannot be observed. In particular, causal reasoning provides
additional factual knowledge about the world outside the model, that is, ϵ must be consistent with
causal reasoning.

Definition 3.2.2 (Semantics of Weighted Abductive Causal Theories). Let T := (∆,A,Φ) be
a weighted abductive causal theory and let ω be a world. The possible explanation of ω is
the subset ϵ ⊆ A of all pure abducibles true in ω. A formula ϕ is (causally) decidable in ω,
written ω |= decides(ϕ), if ϕ is decidable in ω with respect to the explanatory content EXP(T).
We further say that ω is an explainable world if ω causally decides all formulas ϕ, that
is, ω |= decides(ϕ) for all formulas ϕ. The event that T explains everything explains(T) is
then given by the set of all explainable worlds.

We call a subset of pure abducibles ϵ ⊆ A a consistent explanation if there exists a an
explainable world ω with possible explanation ϵ that satisfies all constraints with infinite weight
in CONST(T), i.e., ω |= ϕ whenever (∞, ϕ) ∈ CONST(T). In this case, we call ϵ the explanation
of ω. We define the event that the weighted abductive causal theory T is consistent by

consistent(T) := {ϵ ⊆ A consistent explanation}.

Finally, the explanatory semantics of T is the distribution assigning to every world ω with
possible explanation ϵ the probability

π(ω) := πT(ω) := πexpT (ω) := πCONST(T)(ω|ϵ, explains(T)) · πPRIOR(T)(ϵ| consistent(T)).

Here, we identify every possible explanation ϵ with the event {ω world: ω ⊇ ϵ}.

Again, the probability of a formula ϕ is defined to be

π(ϕ) := πT(ϕ) := πexpT (ϕ) :=
∑

ω world
ω|=ϕ

π(ω).

80 3. Boolean Causal Reasoning under Uncertainty

Example 3.2.2. Recall the weighted abductive causal theory T := (∆,A,Φ) in Example 3.2.1.

A := {spontaneously smokes(X),¬spontaneously smokes(X),¬smokes(X)}X∈{kilian,jakob}

Φ := {(ln(0.2), spontaneously smokes(jakob)),
(ln(0.8),¬spontaneously smokes(jakob)),
(ln(0.2), spontaneously smokes(kilian)),

(ln(0.8),¬spontaneously smokes(kilian))}

∆ := {(∞, spontaneously smokes(jakob)⇒ smokes(jakob))

(∞, spontaneously smokes(kilian)⇒ smokes(kilian)

(ln(2), smokes(kilian)⇒ smokes(jakob))

(ln(2), smokes(jakob)⇒ smokes(kilian))}

Denoting spontaneously smokes() by s smokes(), the explanatory part EXP(T) has the follow-
ing explainable worlds with non-zero weight.

ω({}) = 4

ω({s smokes(kilian), smokes(kilian)}) = 2

ω({s smokes(kilian), smokes(kilian), smokes(jakob)}) = 4

ω({s smokes(jakob), smokes(jakob)}) = 2

ω({s smokes(jakob), smokes(jakob), smokes(kilian)}) = 4

ω({s smokes(kilian), s smokes(jakob), smokes(jakob), smokes(kilian)}) = 4

We observe πΦ(consistent(T)) = 1. Hence, Kilian or Jakob smokes with probability

πexpT (smokes(kilian)) =

= 1 · πΦ(s smokes(kilian)) +
2

3
· πΦ(s smokes(jakob),¬s smokes(kilian)) =

=
1

5
+

2

3
· 1
5
· 4
5
=

23

75

πexpT (smokes(jakob)) = πexpT (smokes(kilian)) =
23

75
.

Kilian and Jakob smoke with probability

πexpT (smokes(jakob), smokes(kilian)) = 1 · 1
25

+
2

3
· 4
25

+
2

3
· 4
25

=
19

75
.

Consequently, if we observe that Jakob is smoking, Kilian smokes with a probability of

π(smokes(kilian)|smokes(jakob)) = 19

23
.

3.2 Weighted Causal Reasoning 81

Let us add the weighted causal rule (∞,¬smokes(jakob) ⇒ smokes(jakob)) stating that Jakob
smokes resulting in the following weighted abductive causal theory T′.

A′ := {spontaneously smokes(X),¬spontaneously smokes(X),¬smokes(X)}X∈{kilian,jakob}

Φ′ := {(− ln(0.2), spontaneously smokes(jakob)),

(− ln(0.8),¬spontaneously smokes(jakob)),
(− ln(0.2), spontaneously smokes(kilian)),

(− ln(0.8),¬spontaneously smokes(kilian))}

∆′ := {(∞, spontaneously smokes(jakob)⇒ smokes(jakob))

(∞, spontaneously smokes(kilian)⇒ smokes(kilian)

(ln(2), smokes(kilian)⇒ smokes(jakob))

(ln(2), smokes(jakob)⇒ smokes(kilian)),

(∞,¬smokes(jakob)⇒ smokes(jakob))}

The explanatory part EXP(T′) has the following explainable worlds with non-zero weight.

ω({s smokes(kilian), smokes(kilian), smokes(jakob)}) = 4

ω({s smokes(jakob), smokes(jakob)}) = 2

ω({s smokes(jakob), smokes(jakob), smokes(kilian)}) = 4

ω({s smokes(kilian), s smokes(jakob), smokes(jakob), smokes(kilian)}) = 4

The event that T′ is consistent is given by

consistent(T′) := {{s smokes(jakob)}, {s smokes(kilian)}, {s smokes(jakob), s smokes(kilian)}},

that is, πΦ(consistent(T′)) = 1− 16

25
=

9

25
.

Hence we find Kilian smoking with a probability

πT′(smokes(kilian)) =
25

9
·
(
1 · 1

5
+

2

3
· 4
25

)
=

23

27
̸= 19

23
= πT(smokes(kilian)|smokes(jakob))

We conclude that adding constraints with infinite weight is not the same as observing these
constraints.

Again, applying the principle of default negation in Law 8, we restrict ourselves to theories of
the following type.

Definition 3.2.3 (Default Negation). A weighted abductive causal theory T has default nega-
tion if its explanatory part EXP(T) has.

82 3. Boolean Causal Reasoning under Uncertainty

Example 3.2.3. The abductive causal theory T := (∆,A,Φ) in Example 3.2.1 has a default
negation.

A := {spontaneously smokes(X),¬spontaneously smokes(X),¬smokes(X)}X∈{kilian,jakob}

Φ := {(ln(0.2), spontaneously smokes(jakob)),
(ln(0.8),¬spontaneously smokes(jakob)),
(ln(0.2), spontaneously smokes(kilian)),

(ln(0.8),¬spontaneously smokes(kilian))}

∆ := {(∞, spontaneously smokes(jakob)⇒ smokes(jakob))

(∞, spontaneously smokes(kilian)⇒ smokes(kilian)

(ln(2), smokes(kilian)⇒ smokes(jakob))

(ln(2), smokes(jakob)⇒ smokes(kilian))}

Having formalized the causal reasoning under uncertainty given by the Laws 1 – 3, 5 – 9 and
Parametrization 4, we now relate the resulting weighted abductive causal theories with default
negation to already existing frameworks in statistical relational artificial intelligence.

Definition 3.2.4 (Weighted Abductive Logic Program). A weighted abductive logic pro-
gram P := (P,A,Φ) consists of an LPMLN program P, a set of abducibles A ⊆ P and an a
priori knowledge, i.e. a LogLinear model Φ in A such that (LP(P),A) is an abductive logic
program. A stable model ω of P with explanation ϵ is a stable model of the abductive logic
program (LP(P|ω),A) that has the explanation ϵ.

Finally, the Bochman transformation of a weighted abductive causal theory T := (∆,A,Φ)
with default negation is given by the weighted abductive logic program

P(T) :=
(
{(w, p← ϕ)}(w,ϕ⇒p)∈∆,A ∩P,Φ

)
.

Example 3.2.4. Recall the weighted abductive causal theory T := (∆,A,Φ) in Example 3.2.1.

A := {spontaneously smokes(X),¬spontaneously smokes(X),¬smokes(X)}X∈{kilian,jakob}

Φ := {(ln(0.2), spontaneously smokes(jakob)),
(ln(0.8),¬spontaneously smokes(jakob)),
(ln(0.2), spontaneously smokes(kilian)),

(ln(0.8),¬spontaneously smokes(kilian))}

∆ := {(∞, spontaneously smokes(jakob)⇒ smokes(jakob))

(∞, spontaneously smokes(kilian)⇒ smokes(kilian)

(ln(2), smokes(kilian)⇒ smokes(jakob))

(ln(2), smokes(jakob)⇒ smokes(kilian))}

The Bochman transformation of T is the weighted abductive logic program P(T) := (P,A,Φ) given
by the LPMLN program P with the clauses

(∞, smokes(jakob)← spontaneously smokes(jakob))

(∞, smokes(kilian)← spontaneously smokes(kilian))

(ln(2), smokes(jakob)← smokes(kilian))

(ln(2), smokes(kilian)← smokes(jakob)),

3.2 Weighted Causal Reasoning 83

the abducibles

A := {spontaneously smokes(jakob), spontaneously smokes(kilian)}

and the a priori knowledge

Φ := {(ln(0.2), spontaneously smokes(jakob)),
(ln(0.8),¬spontaneously smokes(jakob)),
(ln(0.2), spontaneously smokes(kilian)),

(ln(0.8),¬spontaneously smokes(kilian))}

The Bochman transformation yields the following semantics for weighted abductive logic pro-
grams.

Definition 3.2.5 (Semantics of Weighted Abductive Logic Programs). Let P := (P,A,Φ) be a
weighted abductive logic program. An A-structure ϵ ⊆ A is consistent with respect to P if there
exists at least one stable model ω of P with explanation ϵ such that ω |= C for all clauses with
infinite weight (∞, C) ∈ P, that is, (∞, C) ∈ P|ω. In this case, we also say that ϵ is consistent.
We define the event of P being consistent by

consistent(P) := {ϵ ⊆ A: ϵ consistent A-structure}.

The abductive closure of P is defined to be the LPMLN program

P̄ := P ∪ {(0, u): u ∈ A}.

Further, we associate to a stable model ω of P with explanation ϵ the probability

πP(ω) := πP̄(ω|ϵ) · πΦ(ϵ| consistent(P)).

Here, we identify ϵ with the event {ω stable model of P with explanation ϵ}. The probability of a
formula ϕ is then defined by

πP(ϕ) :=
∑

ω stable model of P
ω|=ϕ

πP(ω).

As desired, the Bochman transformation is a bijection that behaves well regarding the explana-
tory semantics of weighted abductive causal theories with default negation.

Lemma 3.2.1. Let T := (∆,A,Φ) be a weighted abductive causal theory with default negation that
has the Bochman transformation P := P(T) := (P,A ∩P,Φ). In this case, a world ω is a stable
model of P with explanation ϵ = ω ∩ (A ∩ P) if and only if ω is an explainable world of T with
explanation for ϵ.

Proof. As T has default negation, a pure abducible is a positive literal p ∈ A. Hence, the possible
explanation ϵ of a world ω is the A ∩P-structure

ϵ = ω ∩ (A ∩P).

The construction of P|ω in Definition 2.2.34 and the construction of EXP(T)|ω in Definition 3.1.8
yields (LP(P|ω),A) = P(EXP(T)|ω). Furthermore, ω is an explainable world if and only if ω is a
causal world of EXP(T)|ω. Therefore, the desired result follows from Theorem 3.1.7.

84 3. Boolean Causal Reasoning under Uncertainty

Theorem 3.2.2. The explanatory semantics of each weighted abductive causal theory T = (∆,A,Φ)
with default negation coincides with the semantics of its Bochman transformation

P := P(T) = (P,A ∩P,Φ).

Proof. Let ω be a stable model of the weighted abductive logic program P with explanation ϵ. Ac-
cording to Lemma 3.2.1 this is the case if and only if ω is an explainable word with respect to T that
has the possible explanation of ϵ. Hence, we conclude that it is sufficient to show πT(ω) = πP(ω).
Recall Definition 3.2.2 and 3.2.5:

πT(ω) = πCONST(T)(ω|ϵ, explains(T)) · πΦ(ϵ| consistent(T))
πP(ω) = πP̄(ω|ϵ) · πΦ(ϵ| consistent(P)) (3.7)

According to Lemma 3.2.1 an (A ∩P)-structure ϵ′ is consistent regarding P if and only if it is
a consistent explanation regarding T. Hence, we conclude consistent(T) = consistent(P) and

πΦ(ϵ| consistent(T)) = πΦ(ϵ| consistent(P)).

Observe that P = CONST(T) and P̄ = P ∪ {(0, u): u ∈ A ∩P}. Let ω′ be an arbitrary stable
model of the abductive closure P̄, that is, ω′ is a stable model of P that satisfies all clauses with
infinite weight, i.e., ω′ |= C whenever (∞, C) ∈ P. According to Lemma 3.2.1 this is the case if
and only if ω′ is an explainable world of T that satisfies all constraints with infinite weight in the
constraint part CONST(T), i.e. ω′ |= C whenever (∞, C) ∈ CONST(T). The construction of the
semantics for LogLinear models and LPMLN programs in Definition 2.2.11 and 2.2.34 then yields
the following identities:

wP̄(ω
′)

Definition 2.2.34
= exp

∑

(w,C)∈P̄
w ̸=∞
ω′|=C

w

 = exp

∑

(w,C)∈P
w ̸=∞
ω′|=C

w

 Definition 2.2.11
= wCONST(T)(ω

′)

wP̄(⊤) =
∑

ω′′ stable
model of P̄

wP(ω
′′) =

∑
ω′′∈explains(T)

ω′′|=C
for all (∞,C)∈CONST(T)

wCONST(T)(ω
′′) = wCONST(T)(explains(T))

πP̄(ω
′) =

wP̄(ω
′)

wP̄(⊤)
=

wCONST(T)(ω
′)

wCONST(T)(explains(T))
= πCONST(T)(ω

′| explains(T)).

We conclude that the distributions πP̄() and πCONST(T)(| explains(T)) coincide, i.e.,

πCONST(T)(ω|ϵ, explains(T)) = πP̄(ω|ϵ).

Therefore, the desired result follows from (3.7).

Weighted abductive logic programming also generalizes the reasoning provided by the proba-
bilistic causal models of Pearl (41).

Definition 3.2.6 (Bochman Transformation). Let M := (M, π) be a Boolean probabilistic
causal model, where M := (U,V,Error,Pa,F). For every equation V := FV (pa(V), error(V))
in M we identify the function FV (pa(V), error(V)) with a formula that has disjunctive normal
form CV1 ∨ ... ∨ CVn . Now, let P be the LPMLN program given by the rules (∞, V ← CVi) and
let Φ be the LogLinear model consisting of a weak constraint (ln(π(u)),u) for every situation u
of the causal model M. The Bochman transformation of M then is the weighted abductive
logic program P(M) := (P,U,Φ).

3.2 Weighted Causal Reasoning 85

Example 3.2.5. Recall the probabilistic causal model M := (M, π) in Example 2.3.3.

M : cloudy := u1

rain := cloudy ∧ u2 sprinkler := (cloudy ∧ u3) ∨ (¬cloudy ∧ u4)
wet := (rain ∨ sprinkler) ∧ u5 slippery := wet ∧ u6

ui mutually independent Boolean random varibales

π(u1) = 0.5 π(u2) = 0.6

π(u3) = 0.1 π(u4) = 0.7

π(u5) = 0.9 π(u6) = 0.8

The Bochman transformation P(M) := (P,A,Φ) of M is given by the LPMLN program P

(∞, cloudy ← u1)

(∞, sprinkler ← cloudy, u2) (∞, sprinkler ← ¬cloudy, u3)
(∞, rain← cloudy, u4) (∞, rain← ¬cloudy, u5)
(∞, wet← rain, u6) (∞, wet← sprinkler, u6)

(∞, slippery ← wet, u7)

the abducibles A := {u1, ..., u6} and the prior knowledge Φ

(ln(0.5 · 0.6 · 0.1 · 0.7 · 0.9 · 0.8), u1 ∧ u2 ∧ u3 ∧ u4 ∧ u5 ∧ u6)
(ln(0.5 · 0.6 · 0.1 · 0.7 · 0.9 · 0.8),¬u1 ∧ u2 ∧ u3 ∧ u4 ∧ u5 ∧ u6)
(ln(0.5 · 0.4 · 0.1 · 0.7 · 0.9 · 0.8), u1 ∧ ¬u2 ∧ u3 ∧ u4 ∧ u5 ∧ u6)
...

(ln(0.5 · 0.4 · 0.9 · 0.3 · 0.1 · 0.2),¬u1 ∧ ¬u2 ∧ ¬u3 ∧ ¬u4 ∧ ¬u5 ∧ ¬u6).

Recall from Section 2.3.3 that causal models correspond to Bochman’s causal theories and ab-
ductive logic programs under the supported model semantics. Hence, if the supported and stable
model semantics coincide in the corresponding abductive logic program, the Bochman transfor-
mation P(M) of a probabilistic Boolean causal model M produces the same distribution as M
itself.

Proposition 3.2.3. Let M := (M, π) be a probabilistic causal model with the Bochman transfor-
mation P(M) := (P,U,Φ). If every situation u of the causal modelM gives rise to a U-structure
consistent with P, the distribution induced by a probabilistic causal model M coincides with the
semantics of its Bochman transformation P(M).

Proof. Let M := (M, π) be a Boolean probabilistic causal model with Bochman transforma-
tion P(M) := (P,U,Φ). In this case, we find that M yields a well-defined distribution only if
every assignment of truth values u to the external variables U of the causal model M yields a
unique solution ω(u), which is the unique supported model of LP(P) ∪ u. Since u also gives
rise to a consistent U-structure with respect to P, we find that LP(P) ∪ u has at least one sta-
ble model. Now, Theorem 1 of Gelfond and Lifschitz (27) yields that ω(u) is the unique stable
model of LP(P) ∪ u. Finally, the desired result follows from the construction of Φ, the observation
π(consistent(P(M))) = 1, and the fact that all the uncertainty of P(M) is concentrated in the a
priori knowledge Φ, i.e. πP(M)(ω(u)) = πΦ(ω(u) ∩U) = π(u) = πM(ω(u)).

The Bochman transformation P(M) assigns to a probabilistic causal model M a distribution,
which is determined by Laws 1 – 3, 5 – 9. In addition, it induces the following notion of intervention
in weighted abductive logic programs.

86 3. Boolean Causal Reasoning under Uncertainty

Definition 3.2.7 (Intervention). Let P := (P,A,Φ) be a weighted abductive logic program and
let i be a truth value assignment on a set of propositions I ⊆ P \ A, which does not contain
any abducibles. To represent the intervention of enforcing i, we construct the modified pro-
gram Pi := (Pi,A,Φ), where Pi is derived from P by removing all clauses (w,C) ∈ P with
head(C) ∈ I and adding a fact (∞, p) for all positive literals p ∈ i.

Example 3.2.6. Recall the weighted abductive logic program P := (P,A,Φ) in Example 3.2.4.

A := {spontaneously smokes(jakob), spontaneously smokes(kilian)}

Φ := {(ln(0.2), spontaneously smokes(jakob)),
(ln(0.8),¬spontaneously smokes(jakob)),
(ln(0.2), spontaneously smokes(kilian)),

(ln(0.8),¬spontaneously smokes(kilian))}

P : (∞, smokes(jakob)← spontaneously smokes(jakob))

(∞, smokes(kilian)← spontaneously smokes(kilian))

(ln(2), smokes(jakob)← smokes(kilian))

(ln(2), smokes(kilian)← smokes(jakob))

If we apply the intervention i := {smokes(kilian)} of Example 3.1.8 to the program P = (P,A,Φ)
we obtain the modified program Pi := (Pi,A,Φ) resulting from P by replacing the LPMLN pro-
gram P with the program

Pi (∞, smokes(jakob)← spontaneously smokes(jakob))

(∞, smokes(kilian))
(ln(2), smokes(jakob)← smokes(kilian)).

Therefore, if Kilian smokes because he is influenced by Richard, Jakob smokes with a probability

π(smokes(jakob)|do(smokes(kilian)) = 11/15.

As required, the notion of intervention in Definition 3.2.7 is consistent with the Bochman
transformation.

Proposition 3.2.4. Let M := (M, π) be a probabilistic Boolean causal model, and i be a truth
value assignment on the internal variables I ⊆ V. In this case, intervening before applying the
Bochman transformation P(Mi) and applying the Bochman transformation before intervening P(M)i
yields the same distribution on P.

Proof. This is proven analogously to Proposition 2.3.5.

3.3 Counterfactual Reasoning

Finally, we transfer counterfactual reasoning from probabilistic causal models to weighted abduc-
tive logic programs. Hence, fix a weighted abductive logic program P := (P,A,Φ) together with
two truth value assignments e, i on sets of propositions E, I ⊆ P\A, not containing any abducibles.
We ask for the probability πP(ϕ|e,do(i)) that a formula ϕ would hold if we had enforced i before
observing the evidence e. According to Lewis (37), this means, we ask for the probability of ϕ to
hold in an alternative world ωa, minimally deviating from the observed real world ωr such that i
becomes true.

3.3 Counterfactual Reasoning 87

Example 3.3.1. Recall the weighted abductive logic program P := (P,A,Φ) of Example 3.2.4.

A := {spontaneously smokes(jakob), spontaneously smokes(kilian)}

Φ := {(ln(0.2), spontaneously smokes(jakob)),
(ln(0.8),¬spontaneously smokes(jakob)),
(ln(0.2), spontaneously smokes(kilian)),

(ln(0.8),¬spontaneously smokes(kilian))}

P : (∞, smokes(jakob)← spontaneously smokes(jakob))

(∞, smokes(kilian)← spontaneously smokes(kilian))

(ln(2), smokes(jakob)← smokes(kilian))

(ln(2), smokes(kilian)← smokes(jakob))

Hence, we consider two friends, Jakob and Kilian, which we denote by the constants jakob
and kilian, respectively. Both friends may smoke, denoted by smokes(jakob) and smokes(kilian),
because they start spontaneously to smoke, denoted by

spontaneously smokes(jakob) and spontaneously smokes(kilian),

or because the other friend smokes.

In this example, we assume the observation that Jakob and Kilian smoke, i.e., we observe

e := {smokes(jakob), smokes(kilian)}.

We now could ask for the probability

πP(smokes(kilian)|smokes(jakob), smokes(kilian),do(¬smokes(jakob)))

that Kilian would smoke if Jakob were not smoking, i.e. if we additionally consider the intervention

i := {¬smokes(jakob)}.

As the evidence e and intervention i contradict each other, this is a counterfactual query. Hence,
we are interested in the alternative worlds ωa that satisfy our intervention i – where Jakob does
not smoke – while minimally deviating from the observed real world ωr, where both Jakob and
Kilian smoke.

To represent the alternative worlds ωa, we proceed like Balke and Pearl (5), i.e. we build mod-
ified twin programs:

First, we make two copies Ia/r of the non-abducibles I := P \ A and set ua/r = u for all ab-
ducibles u ∈ A, yielding maps a/r of literals, (weighted) clauses, truth value assignments, etc.
Here, the superscripts a/r denote the alternative and real worlds, indicating that everything un-
explained remains unchanged in the alternative worlds. The twin program PT := (PT,A,Φ) is
then obtained by replacing the LPMLN program P in P with the program PT := Pa ∪Pr. Finally,
to model the constraint i on the alternative world, we follow Pearl (41) and intervene in the twin
program PT according to ia, resulting in the modified twin program PTia := (Pa

ia ∪Pr,A,Φ).

88 3. Boolean Causal Reasoning under Uncertainty

Example 3.3.2. Recall the weighted abductive logic program P := (P,A,Φ) of Example 3.2.4.

A := {spontaneously smokes(jakob), spontaneously smokes(kilian)}

Φ := {(ln(0.2), spontaneously smokes(jakob)),
(ln(0.8),¬spontaneously smokes(jakob)),
(ln(0.2), spontaneously smokes(kilian)),

(ln(0.8),¬spontaneously smokes(kilian))}

P : (∞, smokes(jakob)← spontaneously smokes(jakob))

(∞, smokes(kilian)← spontaneously smokes(kilian))

(ln(2), smokes(jakob)← smokes(kilian))

(ln(2), smokes(kilian)← smokes(jakob))

In Example 3.3.1, we are interested in the alternative worlds ωa that satisfy the intervention

i := {¬smokes(jakob)},

while minimally deviating from the observed real world ωr, where we observe

e := {smokes(jakob), smokes(kilian)}.

To represent these alternative worlds ωa, we first build the twin program PT := (PT ,A,Φ) by
replacing the LPMLN program P with the program PT below, where we write s smokes/1 instead
of spontaneously smokes/1.

PT : (∞, smokes(kilian)r ← s smokes(kilian)) (∞, smokes(kilian)a ← s smokes(kilian))

(∞, smokes(jakob)r ← s smokes(jakob)) (∞, smokes(jakob)a ← s smokes(jakob))

(ln(2), smokes(jakob)r ← smokes(kilian)r) (ln(2), smokes(jakob)a ← smokes(kilian)a)

(ln(2), smokes(kilian)r ← smokes(jakob)r) (ln(2), smokes(kilian)a ← smokes(jakob)a)

Next, we model the constraint i on the alternative worlds and intervene according to ia, i.e. we
further replace PT with the following LPMLN program PT

¬smokes(jakob)a , yielding the modified

weighted abductive logic program PTia := (PT
ia ,A,Φ).

PT
ia : (∞, smokes(kilian)r ← s smokes(kilian)) (∞, smokes(kilian)a ← s smokes(kilian))

(∞, smokes(jakob)r ← s smokes(jakob))

(ln(2), smokes(jakob)r ← smokes(kilian)r)

(ln(2), smokes(kilian)r ← smokes(jakob)r) (ln(2), smokes(kilian)a ← smokes(jakob)a)

However, if we have no constraint on the alternative world, i.e., if i = ∅, the real and alternative
world coincide, and we should recover the conditional probabilities, that is, we declare the following
law to hold.

Law 10 (Consistency of Counterfactual Reasoning). For every formula ϕ and for each assignment
of truth values e on a subset of propositions E ⊆ P \ A we find πP(ϕ|e) = πP(ϕ|e,do(∅)).

If we naively proceed like Balke and Pearl (5) and compute counterfactual probabilities by
setting πP(ϕ|e,do(i)) := πPT

ia
(ϕa|er), unfortunately we obtain results contradicting Law 10.

3.3 Counterfactual Reasoning 89

Example 3.3.3. In Example 3.3.2, we find that

πPT (smokes(kilian)a|(smokes(kilian)r) = 41/44 ̸= 1 = πP(smokes(kilian)|(smokes(kilian)).

Note that considering no intervention, that is, i := ∅, we find PTia = PT .

Example 3.3.4. Assume Felix and Kailin are drinking tea while the bell rings. If Kailin or
Felix hears the bell, one of them stands up to open the door while the other remains seated.
Now we denote by felix the event that Felix stands up to open the door and by kailin the
event that Kailin stands up to open the door. This could result in the weighted abductive logic
program P := (P,A,Φ) which is given by the LPMLN program P

(∞, felix← ¬kailin, u) (∞, kailin← ¬felix, v),

the abducibles A := {u, v} and the a priori knowledge

Φ := {(− ln(2), u), (− ln(2),¬u), (− ln(2), v), (− ln(2),¬v)}.

We then find the probability

πPT (felixa|felixr) = 0.75 ̸= 1 = πP(felix|felix).

Consider a consistent A-structure ϵ. Further, let ω1, ..., ωn be the stable models ω of PTia
with πPT

ia
(ω) > 0 and explanation ϵ. As the real and the alternative worlds ωi ∩ Pa/r share the

same abducibles, we conclude from Examples 3.3.3 and 3.3.4 that the modified twin program PTia
fails to distribute the mass of the explanation πPT

ia
(ϵ|er) = πP(ϵ|e) to the alternative worlds ωi∩Pa

correctly. In particular, the uncertainty in the LPMLN program Pa
ia lacks an explanation in

terms of the abducibles A, making it infeasible to use the principle of indifference in Law 3,
Parametrization 4 and Pa

ia for distributing the mass πP(ϵ|e) to the alternative worlds ωi ∩ Pa.
However, there is no reason to doubt in the alternative worlds ωi ∩Pa or the hard constraints
of Pa

ia . Therefore, we propose to estimate the counterfactual probability πP(ϕ|e,do(i)) as follows:
Intervene in P according to i and obtain the modified program Pi := (Pi,A,Φ). Since the

stable models and hard constraints of the LPMLN program Pa
ia = Pi stay correct regarding the

alternative worlds ωi ∩Pa, we propose the estimate l ≤ π(ϕ|e,do(i)) ≤ u, where

l :=
∑

ϵ A-structure
πP̄i

(ϕ|ϵ)=1

πP(ϵ|e, consistent(Pi)) and u :=
∑

ϵ A-structure
πP̄i

(ϕ|ϵ)>0

πP(ϵ|e, consistent(Pi)). (3.8)

Here, P̄i denotes the abductive closure of the program Pi. Hence, like the Credal Semantics of
Cozman and Mauá (18; 17), we propose to answer counterfactual queries on general weighted
abductive logic programs with a range of possible values, i.e. πP(ϕ|e,do(i)) ∈ [l, u].

Remark 3.3.1. If we find for the evidence e that π(e) = 0, we obtain π(ϕ|e,do(i)) = 0 for every
assignment of the truth value i on propositions I ⊆ P \ A.
Example 3.3.5. If we apply our procedure to Examples 3.3.3 and 3.3.4, we obtain the statements
π(smokes(kilian)|smokes(kilian),do(∅)) ∈ [0.75, 1] and π(felix|felix, do(∅)) ∈ [0.5, 1], aligned
with Law 10.

Example 3.3.6. In the case of Example 3.3.2, we obtain a sharp probability

π(smokes(kilian)|smokes(jakob), smokes(kilian),do(¬smokes(jakob))) = 11

19

that Kilian would smoke if Jakob were not smoking. If we observe, however, that nobody is
smoking, we only obtain the trivial statement that Kilian would smoke if Jakob were smoking
with a probability

π(smokes(kilian)|¬smokes(jakob),¬smokes(kilian),do(smokes(jakob))) ∈ [0, 1].

90 3. Boolean Causal Reasoning under Uncertainty

Recall that we interpret a weighted abductive logic program P := (P,A,Φ) as a two-step
procedure. The LogLinear model Φ describes our factual knowledge of the world outside the
model as a random experiment where we choose a possible explanation ϵ leading to the possible
worlds Ω|ϵ := {ω stable model of P with explanation ϵ}. Further, the weights in P correspond to
weak constraints in the constraint part of a weighted abductive causal theory and express our
degree of belief in choosing a concrete world ω ∈ Ω|ϵ. However, the selection of this concrete
world ω ∈ Ω|ϵ remains unexplained by the program P.

To derive a counterfactual probability πP(ϕ|e,do(i)), we use evidence e to learn about the
possible explanation ϵ of the possible worlds in Ω|ϵ, i.e., we replace the factual knowledge about
the world outside our model encoded in Φ with the distribution πP(|e). In addition, we replace
the LPMLN program P by the modified program Pi to ensure the constraint i on the alternative
worlds. As the selection of a concrete alternative world

ωa ∈ Ωa|ϵ := {ω stable model of Pi with explanation ϵ}

is not explained by the program P, we can only estimate the probability πP(ϕ|e,do(i)):
If πP̄i

(ϕ|ϵ) = 1, we necessarily choose an alternative world that satisfies the query ϕ. In
particular, knowing about ϵ already enforces the query ϕ in the alternative world, that is, πP(ϵ|e)
contributes to the lower bound l. If πP̄i

(ϕ|ϵ) > 0, we have the possibility to choose a world that
satisfies the query. In particular, knowing about ϵ could lead to an alternative world satisfying
the query ϕ, i.e., πP(ϵ|e) contributes to the upper bound u. Finally, we account for information
about the world outside the model provided by the causal explanation of the alternative world.
By posing a counterfactual query, we a priori assume that the state of the world outside the model
is not inconsistent with the causal description of the alternative world. Hence, we only consider
explanations consistent with our causal knowledge encoded in Pi and condition on consistent(Pi)
in the definition of the upper bound u and the lower bound l.

Remark 3.3.2. If one does not want to assume that the state of the world outside the model
is consistent with the causal description of the alternative world encoded in Pi, one could multi-
ply u and l with πP(consistent(Pi)) to obtain the corresponding lower and upper bounds of the
counterfactual probability πP(ϕ|e,do(i)).

3.4 The Causal Interpretation of Statistical Relational Ar-
tificial Intelligence

In this section, we adopt the viewpoint that weighted abductive logic programming is the most
general formalism for causal reasoning, emerging from Laws 1 – 3, 5 – 9 and Parametrization 4.
We now study its relationship with other formalisms in statistical relational artificial intelligence.
However, before doing so, we transfer the results of Section 3.2 to the non-ground case.

Non-Ground Weighted Causal Reasoning

We aim to extend weighted abductive causal theories to capture relations in a given domain,
providing causal interpretations for formalisms in statistical relational artificial intelligence. As
in the case of Markov logic networks (46) in Section 2.2.3, to define a semantics via grounding,
we represent these relations using quantifier-free formulas ϕ in the fragment of relational first-
order logic, which allows no quantifiers, no function symbols, and only finitely many constant and
predicate symbols. These expressions are combined to weighted constraints (w, ϕ) or weighted
causal rules of the form (w, ϕ ⇒ ψ) for w ∈ R. Similarly to the propositional case, we do not
allow nested expressions of the form ϕ ⇒ ψ ⇒ ρ ⇒ A weighted abductive causal theory is
a triple T := (∆,Ab,Φ), where ∆ is a finite set of weighted causal rules, Ab is a set of literals
and Φ is a Markov logic network in the pure abducibles, that is, in all positive literals p ∈ Ab
with ¬p ∈ Ab. Similarly to non-ground LPMLN programs (35), we proceed by grounding to obtain
the corresponding semantics.

3.4 The Causal Interpretation of Statistical Relational Artificial Intelligence 91

Let A be a relational first-order alphabet. A weighted causal rule (w,R) consists of a
weight w ∈ R ∪ {∞} and a literal causal rule R. For a ground substitution γ the corresponding
ground instance is given by (w,Rγ). Further, a weighted causal theory ∆ is a finite set of
weighted causal rules, and the grounding ∆̄ of ∆ is given by the set of all ground instances of
weighted rules in ∆. Finally, a weighted abductive causal theory T := (∆,Ab,Φ) consists of
a weighted causal theory ∆, a set of literals Ab called abducibles, and a Markov logic network Φ
in the pure abducibles, i.e., it only mentions atoms p ∈ Ab with ¬p ∈ Ab. The grounding of T
is defined as T̄ := (∆̄, Āb, Φ̄); we say that the theory T has default negation if its grounding T̄
has and we associate with T the distribution πT(), which is the explanatory semantics of the
grounding T̄.
Example 3.4.1. Recall the abductive causal theory T := (∆,A) in Example 3.2.1.

Ab := {spontaneously smokes(X),¬spontaneously smokes(X),¬smokes(X)}

∆ := {spontaneously smokes(X)⇒ smokes(X),

smokes(X)⇒ smokes(Y)}

Assume we are unsure whether Kilian and Jakob influence each other to smoke and assume that
everyone smokes spontaneously, independently, with a probability of 0.2. This could result in the
weighted abductive causal theory T := (∆,Ab,Φ) which consists of the weighted causal theory

∆ := {(∞, spontaneously smokes(X)⇒ smokes(X)),

(ln(2), smokes(X)⇒ smokes(Y))}

the abducibles

Ab := {spontaneously smokes(X),¬spontaneously smokes(X),¬smokes(X)},

and the Markov logic network

Φ := {(ln(0.2), spontaneously smokes(X)), (ln(0.8),¬spontaneously smokes(X))}.

The semantics of T is given by the semantics of the propositional weighted abductive causal
theory T̄ := (∆̄, Ā, Φ̄).

∆̄ := {(∞, spontaneously smokes(jakob)⇒ smokes(jakob)),

{(∞, spontaneously smokes(kilian)⇒ smokes(kilian)),

(ln(2), smokes(jakob)⇒ smokes(jakob))}
(ln(2), smokes(jakob)⇒ smokes(kilian))}
(ln(2), smokes(kilian)⇒ smokes(jakob))}
(ln(2), smokes(kilian)⇒ smokes(kilian))}

Āb := {spontaneously smokes(jakob),
¬spontaneously smokes(jakob),
spontaneously smokes(kilian),

¬spontaneously smokes(kilian),
¬smokes(jakob),¬smokes(kilian)}

Φ̄ := {(ln(0.2), spontaneously smokes(jakob)),
(ln(0.2), spontaneously smokes(kilian)),

(ln(0.8),¬spontaneously smokes(jakob)),
(ln(0.8),¬spontaneously smokes(kilian))}

92 3. Boolean Causal Reasoning under Uncertainty

A weighted abductive logic program is a tuple P := (P,Ab,Φ), consisting of an LPMLN

program P, a set of atoms Ab and a Markov logic network Φ. The grounding of P is then
given by P̄ := (P̄, Āb, Φ̄) and we associate to P the distribution πP() that corresponds to its
grounding P̄. Lastly, the Bochman transformation of a weighted abductive causal theory with
default negation T := (∆,Ab,Φ) is the weighted abductive logic program

P(T) :=
(
{(w, p← ϕ)}(w,ϕ⇒p)∈∆, {atoms in Ab},Φ

)
.

Example 3.4.2. The Bochman transformation of the weighted abductive causal theory T in
Example 3.4.1 is the weighted abductive logic program P(T) := (P,Ab,Φ) consisting of the LPMLN

program

P : (∞, smokes(X)← spontaneously smokes(X))

(ln(2), smokes(Y)← smokes(X))

the abducibles Ab := {spontaneously smokes(X)} and the Markov logic network

Φ := {(ln(0.2), spontaneously smokes(X)), (ln(0.8),¬spontaneously smokes(X))}.

As the semantics of both weighted abductive causal theories and weighted abductive logic
programs is defined by grounding, we can conclude that Theorem 3.2.2 remains valid in the
non-ground case. Weighted abductive logic programming thus emerges as a formalism specifically
designed for causal reasoning. Hence, we define a causal interpretation of a framework in statistical
relational artificial intelligence as follows.

Definition 3.4.1 (Causal Interpretation). A causal interpretation C() of a framework that
extends logic with probabilities is an embedding into weighted abductive logic programming.

Subsequently, we propose causal interpretations for the formalisms presented in Section 2.2.

3.4.1 A Causal Interpretation of Markov Logic Networks

We propose to interpret a Markov logic network Φ as the weighted abductive logic program

C(Φ) := (∅, {atoms occurring in Φ},Φ).

As Φ provides no causal explanations; all knowledge is a priori knowledge, not supporting
queries about external interventions and counterfactuals.

3.4.2 A Causal Interpretation of LPMLN Programs

We interpret an LPMLN program P as the weighted abductive logic program C(P) := (P, ∅, ∅), i.e.,
the uncertainty captured in the soft weights w ∈ R is not explained. Suppose P is propositional.
In that case, it allows us to answer queries about the effect of external interventions i by querying
the modified program Pi in Definition 3.2.7. However, for counterfactual reasoning, we obtain
the following result.

Proposition 3.4.1. We obtain πC(P)(ϕ|e,do(i)) = 0, π(ϕ|e,do(i)) = 1, or πC(P)(ϕ|e,do(i)) ∈ [0, 1]
for every counterfactual query π(ϕ|e,do(i)).

Proof. As C(P) has no abducibles, i.e. A = ∅ we find that ∅ is the only A-structure with πΦ(∅) = 1.
Assuming that we find 0 < πPi

(ϕ) < 1, we therefore obtain l = 0 as the lower bound and u = 1
as the upper bound of the counterfactual probability πC(P)(ϕ|e,do(i)). If πPi

(ϕ) = 1, we ob-
tain u = l = 1. Finally, if πPi

(ϕ) = 0, we obtain u = l = 0.

Remark 3.4.1. We conclude that LPMLN programs seem to be the right way to represent Boolean
causal Bayesian networks (41, §1.3) in probabilistic logic programming.

3.4 The Causal Interpretation of Statistical Relational Artificial Intelligence 93

3.4.3 A Causal Interpretation of ProbLog Programs

Assume P is a ProbLog program. In this case, we interpret P as the weighted abductive logic
program C(P) := (P′,A,Φ), where P′ := {(∞, C): C ∈ LP(P)}, A := {u(RF) : RF ∈ Facts(P)},
and Φ := {(ln(π(RF)), u(RF)), (ln(1− π(RF)),¬u(RF)): RF ∈ Facts(P)}.

Example 3.4.3. Recall the ProbLog program P in Example 2.2.49.

Random facts Facts(P):

0.5 :: spontanously smokes(X)

Underlying Logic Program LP(P) :

smokes(X)← spontanously smokes(X)

smokes(Y)← smokes(X)

The program P is interpreted as the weighted abductive logic program C(P) := (P′,A,Φ) con-
sisting of the LPMLN program

P′ : (∞, smokes(X)← spontanously smokes(X))

(∞, smokes(Y)← smokes(X)),

the abducibles A := {spontanously smokes(X)}, and the a priori knowledge

Φ := {(ln(0.5), spontanously smokes(X)), (ln(0.5),¬spontanously smokes(X))}.

As desired, the causal interpretation preserves the semantics of the ProbLog program P.

Proposition 3.4.2. For every structure ω, we find πP(ω) = πC(P)(ω).

Proof. We may, without loss of generality, assume that P is a ProbLog program in a propositional
alphabet P. Observe that a choice ϵ is consistent if and only if it corresponds to a consistent
structure with respect to C(P), that is, consistent(P) = consistent(C(P)).

Let ϵ ⊆ A be a consistent choice and let ω1, . . . , ωn be the stable models of the logic pro-
gram LP(P) ∪ ϵ. One verifies that ω1, . . . , ωn are also the stable models ω with πC(P)(ω) ̸= 0 of
the causal interpretation C(P) with explanation ϵ and that Φ induces the same distribution π on
the error terms in A as the ProbLog program P. Hence, applying Parameterization 4 and the
principle of indifference in Law 3, we can conclude the desired result:

πP(ωi) =
1

n
· π(ϵ| consistent(P)) = πP′(ωi|ϵ) · π(ϵ| consistent(C(P)) = πC(P)(ωi)

From now on, we assume that P is a ProbLog program in a propositional alphabet P. Our
causal interpretation of the ProbLog program P gives rise to the following notion of external
intervention.

Definition 3.4.2 (Intervention in a ProbLog program). Let i be a truth value assignment on
the propositions I ⊆ P. In this case, we model the external intervention of forcing i with the
modified ProbLog program Pi, which is defined by the modified logic program LP(P)i and
the random facts Facts(P).

Remark 3.4.2. This is the same notion of intervention that Rückschloß and Weitkämper (49)
introduce for acyclic ProbLog programs.

94 3. Boolean Causal Reasoning under Uncertainty

Example 3.4.4. Recall the ProbLog program P in Example 2.2.43.

Random facts Facts(P):

0.5 :: u1 0.6 :: u2 0.7 :: u3 0.1 :: u4 0.8 :: u5 0.3 :: u6 0.9 :: u7

Underlying Logic Program LP(P) :

cloudy ← u1

rain← cloudy, u2

sprinkler ← ¬cloudy, u3 sprinkler ← cloudy, u4

wet← rain, u5 wet← sprinkler, u6

slippery ← wet, u7

Assume that we manually turn the sprinkler off (on) in the situation of the program P. This means
that we intervene according to the truth value assignment i := {¬sprinkler} (i := {sprinkler}),
resulting in the modified ProbLog program Pi.

Random facts Facts(Pi):

0.5 :: u1 0.6 :: u2 0.7 :: u3 0.1 :: u4 0.8 :: u5 0.3 :: u6 0.9 :: u7

Underlying Logic Program LP(Pi) :

cloudy ← u1

rain← cloudy, u2

(sprinkler)

wet← rain, u5 wet← sprinkler, u6

slippery ← wet, u7.

As intended, our concept of intervention, as defined in Definition 3.4.2, aligns with the causal
interpretation C().

Proposition 3.4.3. For every truth value assignment i of propositions I ⊆ P, we observe that
the corresponding modified programs satisfy C(Pi) = C(P)i. □

Further, we obtain the following counterfactual reasoning.

Definition 3.4.3 (Counterfactual Reasoning in ProbLog). Let e, i be truth value assignments on
the subsets of propositions E, I ⊆ P, respectively. Further, let ϕ be a formula. In this case, we
define

u :=
∑

ϵ choice
πPi

(ϕ|ϵ)>0

πP(ϵ|e, consistent(Pi)) and l :=
∑

ϵ choice
πPi

(ϕ|ϵ)=1

πP(ϵ|e, consistent(Pi)).

We then obtain for the probability that ϕ would be true if we had intervened according to i before
observing the evidence e that πP(ϕ|e,do(i)) ∈ [l, u].

Example 3.4.5. Assume that Kailin and Felix drink tea and the bell rings. If Kailin or Felix
hears the bell, one of them stands up to open the door while the other remains seated. This can
be modeled with the following ProbLog program P.

Random facts Facts(P):

0.5 :: u1 0.5 :: u2

Underlying Logic Program LP(P) :

felix← ¬kailin, u1
kailin← ¬felix, u2

3.4 The Causal Interpretation of Statistical Relational Artificial Intelligence 95

As in Example 3.3.5, we then obtain πP(felix|felix, do(∅)) ∈ [0.5, 1], which is consistent with
Law 10. Further, assume that Felix answers the door; in this case, Kailin would have answered
the door with probability πP(kailin|felix, do(¬felix)) = 0.5 if he had not opened the door.

As intended, the causal interpretation C() is consistent with counterfactual reasoning.

Proposition 3.4.4. For any truth value assignments e, i on subsets of propositions E, I ⊆ P, we
have lP = lC(P) and uP = uC(P), where πP(ϕ|e,do(i)) ∈ [lP, uP] and πC(P)(ϕ|e,do(i)) ∈ [lC(P), uC(P)],
as discussed in Section 3.3 and defined in Definition 3.4.3. □

We are now interested in ProbLog programs P that assign a precise value to each counterfactual
probability π(ϕ|e,do(i)).

Definition 3.4.4 (ProbLog Programs with Full Explanation). A ProbLog program P offers full
explanation if, for every choice ϵ with π(ϵ) > 0 and for every assignment of truth values i in a
set of propositions I ⊆ P, the logic program LP(P)i ∪ ϵ has at most one stable model ω.

Proposition 3.4.5. Every ProbLog program P with a stratified logic program LP(P) provides full
explanations.

Proof. The desired result follows from Theorem 2.2.2 and the observation that for every truth
value assignment i on a set of propositions I ⊆ P the program LP(P)i is again stratified.

Example 3.4.6. The acyclic ProbLog programs in Example 3.4.4 provide full explanation, whereas
the program in Example 3.4.5 does not provide full explanations.

Now, ProbLog programs providing full explanation are those that answer each counterfactual
query with a sharp probability.

Theorem 3.4.6. The ProbLog program P answers every counterfactual query π(ϕ|e,do(i)) with
a sharp probability if and only if it provides full explanation. In other words, we find

π(ϕ|e,do(i)) := l = u

for all estimates in Definition 3.4.3 if and only if the program P provides full explanation.

Proof. As P provides full explanation, for every consistent choice ϵ with π(ϵ) > 0 there exists a
unique stable model ω of the modified logic program LP(P)i ∪ ϵ. Hence, we find

πPi
(ϕ|ϵ) =

{
1, if ω |= ϕ

0, else

and we conclude
l =

∑
ϵ consistent choice

ω stable model of LP(P)i∪ϵ
ω|=ϕ

πP(ϵ|e, consistent(Pi)) = u.

Further, assume the ProbLog program P does not provide full explanation, i.e. there is a truth
value assignment i and choice ϵ with π(ϵ) > 0 such that the modified logic program LP(P)i∪ ϵ has
two stable models ω1/2, i.e. 0 < πPi

(ω1|ϵ) < 1. We find for the estimates l ≤ u of π(ω1|ω2,do(i))
that l = 0 and u = πP(ϵ|ω1) = 1.

Theorem 3.4.6 states that within ProbLog, programs providing full explanation exactly repre-
sent the probabilistic Aristotelian knowledge necessary for well-defined counterfactual reasoning,
i.e., reasoning that yields a unique probability for every counterfactual query. For ProbLog pro-
grams that offer full explanations, we can further adapt the twin network method proposed by
Balke and Pearl (5) to compute these counterfactual probabilities. Let us start by defining twin
programs.

96 3. Boolean Causal Reasoning under Uncertainty

Definition 3.4.5 (Twin Program). Create two copies, Pr andPa, of our propositional alphabetP
– one to represent the real world and the other to represent the alternative world. Further,
set u(RF)a := u(RF)r := u(RF) for all RF ∈ Facts(P), establishing mappings a/r for formulas,
truth value assignments, programs, etc. The twin program PT of P is then the ProbLog program

defined by LP
(
PT
)
:= LP(P)a ∪ LP(P)r and Facts

(
PT
)
:= Facts(P).

Example 3.4.7. Recall the ProbLog program P in Example 2.2.43.

Random facts Facts(P):

0.5 :: u1 0.6 :: u2 0.7 :: u3 0.1 :: u4 0.8 :: u5 0.3 :: u6 0.9 :: u7

Underlying Logic Program LP(P) :

cloudy ← u1

rain← cloudy, u2

sprinkler ← ¬cloudy, u3 sprinkler ← cloudy, u4

wet← rain, u5 wet← sprinkler, u6

slippery ← wet, u7

We obtain the following twin program PT of the program P.

Random facts Facts(PT):

0.5 :: u1 0.6 :: u2 0.7 :: u3 0.1 :: u4 0.8 :: u5 0.3 :: u6 0.9 :: u7

Underlying Logic Program LP(PT) :

cloudyr ← u1 cloudya ← u1

rainr ← cloudyr, u2 raina ← cloudya, u2

sprinklerr ← ¬cloudyr, u3 sprinklera ← ¬cloudya, u3
sprinklerr ← cloudyr, u4 sprinklera ← cloudya, u4

wetr ← rainr, u5 weta ← raina, u5

wetr ← sprinklerr, u6 weta ← sprinklera, u6

slipperyr ← wetr, u7 slipperya ← weta, u7.

Twin programs allow us to compute counterfactual probabilities.

Lemma 3.4.7. Let P be a ProbLog program that offers full explanation. For every choice ϵ and
every truth value assignment i on a set of propositionts I ⊆ P we find

πP(ϵ| consistent(Pi)) = πPT
ia
(ϵ).

Proof. Denote by π the distribution on the choices of P, Pi and PT
ia , respectively, that is induced

by the random facts in Facts(P) = Facts(Pi) = Facts(PT
ia).

Let ϵ be a choice of P that is consistent with respect to both programs P and Pi. In this case,
we obtain unique stable models ωi of LP(P)i ∪ ϵ and ω of LP(P) ∪ ϵ. We observe that ωr ∪ ωai
yields a stable model of PT

ia , that is, ϵ is consistent with respect to PT
ia .

If ϵ is a consistent choice of PT
ia , we obtain a unique stable model ω of LP(PT

ia) ∪ ϵ. Now
we observe that ω ∩ Pa yields a stable model of LP(Pi) ∪ ϵ and ω ∩ Pr yields a stable model
of LP(P) ∪ ϵ. Hence, ϵ is consistent with respect to both the programs P and Pi.

In summary, we find consistent(PT
ia) = consistent(P) ∩ consistent(Pi) and

πP(ϵ| consistent(Pi)) = π(ϵ| consistent(Pi), consistent(Pi)) = π(ϵ| consistent(PT
ia)) = πPT

ia
)(ϵ)

for all choices ϵ of P.

3.4 The Causal Interpretation of Statistical Relational Artificial Intelligence 97

Theorem 3.4.8. If the ProbLog program P provides full explanation, we have

πP(ϕ|e,do(i)) = πPT
ia
(ϕa|er)

for every formula ϕ and every truth value assignments e, i on sets of propositions E, I ⊆ P.

Proof. Let us calculate.

πP(ϕ|e,do(i)) =
∑

ϵ consistent choice of P and Pi
ω stable model of LP(P)i∪ϵ

ω|=ϕ

πP(ϵ|e, consistent(Pi)) =

=
∑

ϵ consistent choice of P and Pi
ωi stable model of LP(P)i∪ϵ
ω stable model of LP(P)∪ϵ

ω|=e, ωi|=ϕ

πP(ϵ|e, consistent(Pi)) =

=
1

πP(e| consistent(Pi))

∑
ϵ consistent choice of P and Pi
ωi stable model of LP(P)i∪ϵ
ω stable model of LP(P)∪ϵ

ω|=e, ωi|=ϕ

πP(ϵ, e| consistent(Pi)) =

=
1

πP(e| consistent(Pi))

∑
ϵ consistent choice of P and Pi
ωi stable model of LP(P)i∪ϵ
ω stable model of LP(P)∪ϵ

ω|=e, ωi|=ϕ

πP(ϵ| consistent(Pi))
Lemma 3.4.7

=

=
1

πP(e| consistent(Pi))

∑
ϵ consistent choice

ω stable model of LP(PT)ia∪ϵ
ω|=er, ωi|=ϕa

πPT
ia
(ϵ) =

= πPT
ia
(ϕa, er) · πP(e, consistent(Pi))

−1 =

= πPT
ia
(ϕa, er)

∑

ϵ consistent choice
ω stable model of LP(P)∪ϵ

ω|=e

πP(ϵ| consistent(Pi))

−1

Lemma 3.4.7
=

= πPT
ia
(ϕa, er)

∑

ϵ consistent choice
ω stable model of LP(PT)ia∪ϵ

ω|=er

πPT
ia
(ϵ)

−1

=
πPT

ia
(ϕa, er)

πPT
ia
(er)

= πPT
ia
(ϕa|er)

Kiesel et al. (34) employ Theorem 3.4.8 to compute counterfactual probabilities for acyclic
ProbLog programs. Notably, Kiesel’s WhatIf solver extends his aspmc solver, utilizing Theo-
rem 3.4.8 to calculate counterfactual probabilities.

Example 3.4.8. In Example 3.4.7, we may observe the evidence e := {sprinkler, slippery}
that the sprinkler is on and that the road is slippery. Assume now that we are interested in

98 3. Boolean Causal Reasoning under Uncertainty

the counterfactual probability π(slippery|sprinkler, slippery,do(¬sprinkler)) for the road to be
slippery if the sprinkler were off. In this case, we query the modified twin program PT

¬sprinklera

Random facts Facts(PT
¬sprinklera):

0.5 :: u1 0.6 :: u2 0.8 :: u3 0.1 :: u4 0.7 :: u5 0.3 :: u6 0.9 :: u7

Underlying Logic Program LP(PT
¬sprinklera) :

cloudyr ← u1 cloudya ← u1

rainr ← cloudyr, u2 raina ← cloudya, u2

sprinklerr ← ¬cloudyr, u3
sprinklerr ← cloudyr, u4

wetr ← rainr, u5 weta ← raina, u5

wetr ← sprinklerr, u6 weta ← sprinklera, u6

slipperyr ← wetr, u7 slipperya ← weta, u7.

for the probability

π(slippery|sprinkler, slippery, do(¬sprinkler)) = π(slipperya|sprinklerr, slipperyr) = 0.140...

Lastly, we describe the fragment of weighted abductive logic programming that corresponds
to ProbLog. To this aim, we recall Reichenbach’s common cause principle: “If an improbable
coincidence has occurred, there must exist a common cause.” (45, Ch. 19) In other words, two
random variables are dependent either because of a causal relationship or because they share
a common cause. Here, we weaken this principle and assert that all dependencies stem either
from a causal relationship or from a common cause or from deriving contradictions with causal
reasoning. We say that a weighted abductive logic program explains all dependencies if there is
no uncertainty in its clauses and if the prior knowledge Φ interprets the abducibles as mutually
independent random variables.

Definition 3.4.6 (Explaining Dependencies). A weighted abductive logic program P := (P,A,Φ)
explains all dependencies if for every weighted clause (w,C) ∈ P we find w = ∞ and if Φ
interprets the abducibles A as mutually independent Boolean random variables.

We now obtained that every weighted abductive logic program that explains all dependencies
corresponds to a ProbLog program and vice versa.

Proposition 3.4.9. Let P := (P,A,Φ) be a weighted abductive logic program that explains all de-
pendencies. In this case, there exists a ProbLog program P such that the causal interpretation C(P)
yields the same answer to every query as P and vice versa.

Proof. Since the abducibles A are interpreted as mutually independent random variables, we
may, without loss of generality, assume that Φ := {(ln(π(u)), u), (ln(1− π(u)),¬u) : u ∈ A}. Now
let P′ be the ProbLog program that is given by the logic program LP(P′) := {C : (∞, C) ∈ P} and
by Facts(P′) := {π(u) :: u : u ∈ A}. We then find C(P) = P as desired. For the other direction, we
observe that the causal interpretation C(P) of each ProbLog program P explains all dependencies.

Remark 3.4.3. Similarly, ProbLog programs correspond to the Bochman transformations of
Boolean causal models that interpret the external variables as mutually independent error terms.

In conclusion, our discussion in this section and Section 3.3 leads to the following understand-
ing: Representing (probabilistic) Aristotelian knowledge by weighted abductive logic programs,
ProbLog programs, which offer full explanation, precisely capture Aristotelian knowledge that is
necessary for well-defined counterfactual reasoning in the sense of Pearl (41), i.e., reasoning that
yields a unique probability for every counterfactual query.

3.4 The Causal Interpretation of Statistical Relational Artificial Intelligence 99

3.4.4 A Causal Interpretation of Logic Programs with Annotated Dis-
junctions

Here, we aim at a causal interpretation of LPADs (62). We focus on propositional LPADs, as the
semantics of non-ground LPADs is defined by grounding. Therefore, our results easily extend to
the non-ground case. Fix a propositional alphabet P and assume P is an LPAD. We interpret P
as the weighted abductive logic program

C(P) := (P′,A,Φ),

where P′ := {(∞, hσ(C)(C) ← body(C) ∪ {σ}): C ∈ P, σ selection, σ(C) ̸=⊥}, A is the set of
selections, and Φ consists of the weak constraints (ln(π(σ)), σ) for the selections σ along with hard
constraints indicating mutual exclusivity among selections. In this context, we observe that C()
preserves the semantics ofP, that is, πP(ϕ) = πC(P)(ϕ) for all formulas ϕ. In the propositional case,
we obtain the notion of intervention discussed in Section 2.3.2 and the counterfactual reasoning
introduced in Procedure 2.3.1. Furthermore, we note that the LPAD and ProbLog transformations,
as defined in Definition 2.2.31 and 2.2.32, respectively, preserve the outcome of counterfactual
queries.

Lemma 3.4.10. Choose a literal l ∈ {p,¬p} for a proposition p ∈ P.

i) In the situation of Theorem 2.2.5, for every choice ϵ ∈ ϵ(σ) the logic program Pσ
l and the

logic program LP(Prob(P))l ∪ ϵ yield the same stable models.

ii) In the situation of Theorem 2.2.6, for every selection σ of LPAD(P), the program LPAD(P)σl
and the program LP(P)l ∪ ϵ(σ) yield the same stable models.

Proof. We provide only a proof for i) since ii) can be proven analogously. From Theorem 2.2.5,
we deduce that the programs Pσ and LP(Prob(P)) ∪ ϵ share the same stable model ω. Due to
the modular nature of logic programs, this behavior remains unchanged if we eliminate all clauses
with p in the head of both programs. Finally, the desired behavior is not disturbed by adding the
fact p to both programs.

Theorem 3.4.11 (Consistency with ProbLog – Part 1). Let I and E be subsets of propositions
in P, each associated with the assignment of truth values i and e, respectively. Additionally, fix
a formula ϕ and assume that the logic programs Pσ and Pσ

i produce unique stable models ω(σ)
and ωi(σ), respectively, for all selections σ of P. In this context, we have

πP(ϕ|e,do(i)) = πProb(P)(ϕ|e,do(i)).

Proof. By Theorem 2.2.5 and Lemma 3.4.10, the right-hand side of (2.11) for P is the sum of
conditional probabilities πProb(P)(ϵ|e) for all choices ϵ of Prob(P) such that ω |= e for the stable
model ω of LP(Prob(P)) ∪ ϵ, and ωi |= ϕ for the stable model ωi of LP(Prob(P))i ∪ ϵ. These
choices correspond precisely to scenarios where the query ϕ is true after the intervention, while
the observation e is true before the intervention. Hence, Definition 3.4.3 computes the same value
as Procedure 2.3.1.

Theorem 3.4.12 (Consistency with CP-Logic – Part 2). Revisiting the scenario described in
Theorem 3.4.11, and assuming that P is a ProbLog program offering full explanation, we obtain
the equality

πLPAD(P)(ϕ|e,do(i)) = πP(ϕ|e,do(i)).

Proof. Using Theorem 2.2.6 instead of Theorem 2.2.5, we can establish an analogous proof to that
of Theorem 3.4.11.

100 3. Boolean Causal Reasoning under Uncertainty

However, intervening in LPADs could yield counterintuitive results.

Example 3.4.9 (Rückschloß and Weitkämper (50)). Assume that we are throwing a die. We
can throw one, two, three, four, five, or six, each with a probability of 1/6. This scenario can be
modeled with the LPAD clause:

one :
1

6
; two :

1

6
; three :

1

6
; four :

1

6
; five :

1

6
; six :

1

6

Now, if we intervene by simply turning over the die to show the number four, our program is
modified accordingly:

four : 1

one :
1

6
; two :

1

6
; three :

1

6
; five :

1

6
; six :

1

6

In particular, we obtain a probability of 1/6 for the die to show both one and four at the same
time, contradicting our daily experience.

Given that counterfactual reasoning in LPADs can be effectively modeled in ProbLog and
avoiding unrealistic results as in Example 3.4.9, our forthcoming investigation of counterfactual
reasoning will utilize the ProbLog language instead of LPAD.

3.5 First Result: A Unifying Framework for Causal Knowl-
edge

We observe that weighted abductive logic programming is an effective tool for comparing the
causal reasoning capabilities across various frameworks within statistical relational artificial in-
telligence. Notably, ProbLog programs that provide full explanation emerge as the preferred
formalism for addressing Boolean counterfactual reasoning. In the next chapter, we delve into
a detailed exploration of the relationship between counterfactual reasoning and acyclic ProbLog
programs. Working out the causal query types, i.e. queries for the effect of external interventions
and counterfactual queries, for the non-ground case would be an interesting direction for future
work.

Chapter 4

Extracting Causal Knowledge
from Counterfactuals

Statement of Contribution

This chapter builds upon the material presented by Rückschloß and Weitkämper (51). Here,
Kilian Rückschloß contributed the main idea and proofs of all results, while Felix Weitkämper
contributed the motivation and an example of two programs that give rise to the same counter-
factual reasoning (51, Example 14).

This chapter improves on that contribution with:

• additional examples;

• more detailed proofs, explanations, and correction of minor mistakes;

• an in-depth discussion of the assumptions underlying the results.

102 4. Extracting Causal Knowledge from Counterfactuals

In Section 3.3, we introduce counterfactual reasoning based on probabilistic Aristotelian knowl-
edge, represented by weighted abductive logic programs P := (P,A,Φ) in a propositional al-
phabet P. Let ϕ be a formula, and let e, i be truth value assignments on the propositions
in E, I ⊆ P \ A, respectively. Generally, the counterfactual probability π(ϕ|e,do(i)) – indicating
the likelihood of ϕ holding if we had enforced i before observing the evidence e – is underdetermined
by the program P and can only be estimated within an interval π(ϕ|e,do(i)) ∈ [l, u].

However, in Section 3.4.3, we demonstrate that the probabilistic Aristotelian knowledge re-
quired to compute sharp counterfactual probabilities π(ϕ|e,do(i)) is precisely provided by ProbLog
programsP that offer full explanation. In this chapter, we now investigate the relationship between
counterfactual reasoning and probabilistic Aristotelian knowledge, as stated by these ProbLog
programs. Specifically, we study the information about a ProbLog program P provided by the
counterfactual probabilities π(ϕ|e,do(i)) and ask for the notion of program equivalence induced
by counterfactual reasoning.

Recall the ProbLog program P in Example 2.2.43.

Random facts Facts(P):

0.5 :: u1 0.6 :: u2 0.7 :: u3 0.1 :: u4 0.8 :: u5 0.3 :: u6 0.9 :: u7

Underlying Logic Program LP(P) :

cloudy ← u1

rain← cloudy, u2

sprinkler ← ¬cloudy, u3 sprinkler ← cloudy, u4

wet← rain, u5 wet← sprinkler, u6

slippery ← wet, u7

Hence, we assume that it is cloudy, denoted cloudy, with probability 0.5. If cloudy, it rains,
denoted rain, with probability 0.6. The sprinkler is then switched on, denoted sprinkler, by a
weather sensor with a probability of 0.1 if it is cloudy and a probability of 0.7 if it is sunny. The
road pavement is wet, denoted wet, with a probability of 0.8 if it rains and with a probability
of 0.3 if the sprinkler is on. Finally, a wet road is slippery, denoted slippery, with a probability
of 0.9.

Based on the program P, we can compute counterfactual probabilities, such as

π(slippery | sprinkler, slippery, do(¬sprinkler)) := π(slipperya | sprinklerr, slipperyr) = 0.140...,

indicating a likelihood of 0.140... for the road to be slippery if we had switched the sprinkler off
before observing that the road is slippery while the sprinkler is indeed on. As the program P
is acyclic, Theorem 3.4.6 guarantees that P provides a concrete value for every counterfactual
probability π(ϕ|e,do(i)).

At this point, we address the following questions. What information do counterfactual prob-
abilities, such as π(slippery|sprinkler, slippery, do(¬sprinkler)), capture about the program P?
What are the ProbLog programs P′ in the alphabet P that produce the same counterfactual
probabilities as P?

Considering the program P, we recognize that every clause in the underlying logic pro-
gram LP(P) mentions a unique error term u1, ..., u6. We conclude that the error terms serve
as switches for clauses in a logic program. Suppressing the error terms, we therefore identify P
with the following ProbLog clauses, indicating that we choose these clauses independently with
the corresponding probability.

0.5 :: cloudy

0.6 :: rain← cloudy

0.7 :: sprinkler ← ¬cloudy 0.1 :: sprinkler ← cloudy

0.8 :: wet← rain 0.3 :: wet← sprinkler

0.9 :: slippery ← wet

4.1 Knowledge Underdetermined by Counterfactual Reasoning 103

Recall from Section 2.2.4 that a ProbLog program P lies in the fragment of ProbLog clauses if
each clause in the underlying logic program LP(P) mentions a unique error term. In this case, the
ProbLog program P can be represented by ProbLog clauses. This viewpoint contrasts with the
usual presentation of ProbLog, where one would introduce an extra error term for every ProbLog
clause. From this perspective, ProbLog clauses are just a syntactic sugar to conveniently represent
general ProbLog programs. In the context of causal reasoning, however, the error terms have a
semantic meaning, i.e., they capture the influence of hidden variables not explicitly modeled in our
program. Adopting this viewpoint, the fragment of ProbLog clauses should indeed be considered
as a fragment of general ProbLog programs.

In this chapter, we restrict ourselves to studying acyclic ProbLog programs within the fragment
of ProbLog clauses. Section 4.1 then presents examples of such ProbLog programs that yield the
same counterfactual probabilities and introduces the notion of a proper ProbLog program in
normal form that satisfies Occam’s razor. Furthermore, in Section 4.2, we prove our main result,
Theorem 4.2.6, stating that counterfactual reasoning determines acyclic proper ProbLog programs
in normal form that satisfy Occam’s razor up to syntactic equality. Hence, we obtain a fragment
of probabilistic Aristotelian knowledge uniquely determined by counterfactual reasoning.

4.1 Knowledge Underdetermined by Counterfactual Rea-
soning

For the remainder of this chapter, we fix a propositional alphabet P and restrict ourselves to
studying acyclic ProbLog programs in the fragment of ProbLog clauses.

Convention. In the following, we restrict the term ProbLog program to programs in the
fragment of ProbLog clauses that provide full explanation. In fact, we identify such a ProbLog
program with a set P of ProbLog clauses.

Furthermore, we make the assumption that Occam’s razor (23) holds, meaning that all pro-
grams P under consideration do not include clauses that are unnecessary for defining the corre-
sponding probability distribution.

Definition 4.1.1 (Occam’s Razor). A ProbLog program P satisfies Occam’s razor if every
clause PC ∈ P has a non-zero probability, i.e. π(PC) ̸= 0, and if the body of every clause PC ∈ P
has a non-zero probability, i.e. π(body(PC)) ̸= 0.

Example 4.1.1. Consider the following acyclic ProbLog programs in the alphabetP := {p, q, r, s, t}.

P1 : 0.5 :: p 0.5 :: q ← p 0.5 :: r ← ¬p
P2 : 0.5 :: p 0.5 :: q ← p 0.5 :: r ← ¬p 0.5 :: s← t

P3 : 0.5 :: p 0.5 :: q ← p 0.5 :: r ← ¬p 0 :: s

P4 : 0.5 :: p 0.5 :: q ← p 0.5 :: r ← ¬p 0.5 :: s← q, r

Note that all programs P1 − P4 yield the same distribution. However, program P1 satisfies
Occam’s razor, whereas programs P2 −P4 do not.

We aim to specify the families of acyclic ProbLog programs satisfying Occam’s razor that yield
the same counterfactual probabilities.

Definition 4.1.2 (Counterfactual Reasoning). A counterfactual reasoning π on the alpha-
bet P consists of a probability π(ϕ | e,do(i)) ∈ [0, 1] for every pair of sets of literals e and i and
for every formula ϕ. According to Theorem 3.4.6, every ProbLog program P providing full expla-
nation gives rise to a counterfactual reasoning π, which we call the counterfactual semantics
of P.

Remark 4.1.1. We identify a truth value assignment s on a set of propositions S ⊆ P with the
set of literals that it renders true.

104 4. Extracting Causal Knowledge from Counterfactuals

Our focus lies on acyclic ProbLog programs that adhere to Occam’s razor and exhibit identical
counterfactual semantics. Subsequently, we present two examples of such programs.

Example 4.1.2. Consider the ProbLog programs P1/2 in the alphabet P := {a}.

P1 : 0.5 :: a 0.6 :: a

P2 : 0.8 :: a

The programs P1/2 are acyclic and satisfy Occam’s razor. Since there are only the interven-
tions ∅, {a} and {¬a}, we further obtain that the programs P1/2 have the same counterfactual
semantics if they yield the same distribution, which is indeed the case.

Example 4.1.2 motivates that we restrict ourselves to ProbLog programs in normal form.

Definition 4.1.3 (Normal Form). A ProbLog program P is in normal form if any two distinct
ProbLog clauses PC1/2 ∈ P differ either in their heads or bodies, i.e., head(PC1) ̸= head(PC2)
or body(PC1) ̸= body(PC2).

Example 4.1.3. The program P1 in Example 4.1.2 is not in normal form, whereas P2 is.

Fortunately, it is possible to translate every ProbLog program P into an equivalent ProbLog
program in normal form.

Proposition 4.1.1. We can translate every ProbLog program P that is not in normal form to a
program P′ in normal form with the same counterfactual semantics as P.

Proof. Let P′ be the program resulting from P by replacing all clauses PC1, ..., PCn sharing the
same head head(PC) and body body(PC) with a ProbLog clause(

1−
n∏
i=1

(1− π(PCi))

)
:: head(PC)← body(PC).

According to Theorem 3.4.8, for an intervention i, the counterfactual probabilities π(ϕ | e,do(i))
depend only on the probability distribution on the logic programs LP(PT

i) ∪ ϵ induced by the
choices ϵ. Consequently, P and P′ yield the same counterfactual semantics.

Finally, we adapt an example credited to Lifshitz (10, Example 8.3) and derive two additional
ProbLog programs that share the same counterfactual semantics.

Example 4.1.4. Consider the following acyclic ProbLog programs in normal form, adhering to
Occam’s razor, within the alphabet P := {p, q}.

P1 : 0.5 :: p 1 :: q ← p 1 :: q ← ¬p
P2 : 0.5 :: p 1 :: q

Computing all counterfactual probabilities verifies that the programs P1/2 give rise to the same
counterfactual semantics.

Because of Example 4.1.4, we further restrict ourselves to acyclic proper ProbLog programs in
normal form that satisfy Occam’s razor.

Definition 4.1.4 (Properness). A ProbLog program P is proper if it does not mention trivial
probabilities of zero and one, i.e. for every ProbLog clause PC ∈ P we find π(PC) ̸= 0, 1.

Example 4.1.5. Recall the ProbLog program P in Example 2.2.48.

0.5 :: cloudy

0.6 :: rain← cloudy

0.7 :: sprinkler ← ¬cloudy 0.1 :: sprinkler ← cloudy

0.8 :: wet← rain 0.3 :: wet← sprinkler

0.9 :: slippery ← wet

The program P is proper, whereas the program in Example 4.1.4 is not.

4.2 Knowledge Uniquely Determined by Counterfactual Reasoning 105

In the upcoming section, we demonstrate that counterfactual reasoning uniquely determines
an acyclic proper ProbLog program P in normal form, satisfying Occam’s razor up to syntactic
equality.

4.2 Knowledge Uniquely Determined by Counterfactual Rea-
soning

Let us consider a fixed acyclic proper ProbLog program P in normal form that satisfies Occam’s
razor. Now imagine that we have forgotten the details of the program P and only have access to
its counterfactual semantics π. We aim to demonstrate that the counterfactual reasoning π alone
is sufficient to reconstruct the program P up to syntactic equality. Our starting point for this
endeavor is Lemma 4.2.1, which assists us in identifying the structural information embedded in
the counterfactual reasoning π.

Lemma 4.2.1 (Important Identities). Let P be an acyclic proper ProbLog program, and select a
proposition p ∈ P together with two supersets

pa(p) ⊆ S1,S2 ⊆ P \ {p}

of the parents pa(p) of p in the dependence graph graph(P), not containing p itself. For any two
truth value assignments s1 and s2 on S1 and S2, respectively, we obtain the following identities.

π(p | do(s1)) = π

∨

PC∈P
head(PC)=p
body(PC)⊆s1

u(PC)

 = 1−
∏
PC∈P

head(PC)=p
body(PC)⊆s1

(1− π(PC)) (4.1)

π(p | s1, p,do(s2)) = π

∨

PC∈P
head(PC)=p
body(PC)⊆s2

u(PC)

∣∣∣∣∣∣∣∣∣∣
∨

PC∈P
head(PC)=p
body(PC)⊆s1

u(PC)

 = (4.2)

=

1− 1− π(p | do(s2))
π(p | do(s1))

1− (1− π(p | do(s1)))∏

PC∈P
head(PC)=p

body(PC)⊆s1∩s2

(1− π (PC))

if π(p, s1) ̸= 0

0 else

(4.3)

Proof. To prove Equation (4.1) we observe

π(p | do(s1))
choice of S1 and S2= π

∨

PC∈P
head(PC)=p
body(PC)⊆s1

u(PC)

 = 1−
∏

PC∈P
head(PC)=p
body(PC)⊆s1

(1− π(PC)).

106 4. Extracting Causal Knowledge from Counterfactuals

Further, we turn to the proof of Equation (4.2) and (4.3). If π(p, s1) = 0, Remark 3.3.1
yields π(p | s1, p,do(s2)) = 0. Otherwise, we use Theorem 3.4.8 and obtain

π(p | s1, p,do(s2))
choice of S1/2

= π

∨

PC∈P
head(PC)=p
body(PC)⊆s2

u(PC)

∣∣∣∣∣∣∣∣∣∣
p ∧ s1

 .

For a choice ϵ, the logic program LP(P) ∪ ϵ has the supported model ω = {p} ∪ s1 if and only if

ϵ |=
∨

PC∈P
head(PC)=p
body(PC)⊆s1

u(PC) ∧
∧

q∈P∩s1

∨

PC∈P
head(PC)=q
body(PC)⊆s1

u(PC)

 ∧
∧

PC∈P
q∈P\(s1∪{p})
head(PC)=q
body(PC)⊆s1

¬u(PC). (4.4)

Since P is acyclic, we obtain from the independence of the error terms that

π(p | s1, p,do(s2)) = π

∨

PC∈P
head(PC)=p
body(PC)⊆s2

u(PC)

∣∣∣∣∣∣∣∣∣∣
∨

PC∈P
head(PC)=p
body(PC)⊆s1

u(PC)

 =

= 1− π

∧

PC∈P
head(PC)=p
body(PC)⊆s2

¬u(PC)

∣∣∣∣∣∣∣∣∣∣
∨

PC∈P
head(PC)=p
body(PC)⊆s1

u(PC)

 =

= 1−

π

∨

PC1∈P
head(PC1)=p
body(PC1)⊆s1

u(PC1) ∧

∧

PC2∈P
head(PC2)=p
body(PC2)⊆s2

¬u(PC2)

π

∨

PC∈P
head(PC)=p
body(PC)⊆s1

u(PC)

independence of
error terms & (4.1)

=

= 1− 1− π(p | do(s2))
π(p | do(s1))

· π

∨

PC∈P
head(PC)=p
body(PC)⊆s1
body(PC) ̸⊆s2

u(PC)

.

4.2 Knowledge Uniquely Determined by Counterfactual Reasoning 107

Again, invoking the independence of the error terms, we deduce that

π

∨

PC∈P
head(PC)=p
body(PC)⊆s1
body(PC)̸⊆s2

u(PC)

= 1−

π

∧

PC∈P
head(PC)=p
body(PC)⊆s1

¬u(PC)

π

∧

PC∈P
head(PC)=p

body(PC)⊆s1∩s2

¬u(PC)

= 1− 1− π(p | do(s1))∏

PC∈P
head(PC)=p

body(PC)⊆s1∩s2

(1− π(PC))
.

The next proposition explicates the structural information about P uncovered by Lemma 4.2.1.

Proposition 4.2.2 (Structural Information in Counterfactual Semantics). Recall the context of
Lemma 4.2.1.

i) We find π(p | s1, p,do(s2)) = 1 if and only if π(s1, p) > 0 and for every clause PC ∈ P
with head(PC) = p and body(PC) ⊆ s1, we obtain body(PC) ⊆ s2.

ii) We find π(p | s1, p,do(s2)) > π(p | do(s2)) if and only if π(p, s1) > 0 and there exists a
clause PC ∈ P with body(PC) ⊆ s1 ∩ s2.

Proof. We begin by proving i). Assume that we find π(s1, p) > 0 and body(PC) ⊆ s2 for ev-
ery clause PC ∈ P with head(PC) = p and body(PC) ⊆ s1. In this case, π(p | s1, p,do(s2)) = 1
follows from Equations (4.1) and (4.3) of Lemma 4.2.1. Further, assume π(p | s1, p,do(s2)) = 1.
In particular, we find π(p, s1) > 0, and by properness, we have π(p | do(s2)) < 1. Hence, Equa-
tions (4.1) and (4.3) yield∏

PC∈P
head(PC)=p
body(PC)⊆s1

(1− π(PC)) = 1− π(p | do(s1)) =
∏

PC∈P
head(PC)=p

body(PC)⊆s1∩s2

(1− π (PC)).

Finally, from properness we deduce that body(PC) ⊆ s2 for every ProbLog clause PC ∈ P
with head(PC) = p and body(PC) ⊆ s1.

Next, we prove ii). Assume 1 ≥ π(p | s1, p,do(s2)) > π(p | do(s2)) ≥ 0. Again, we find
π(p, s1) > 0 and π(p | do(s2)) < 1. Hence, Equations (4.1) and (4.3) ensure that∏

PC∈P
head(PC)=p

body(PC)⊆s1∩s2

(1− π(PC)) < 1 (4.5)

and we obtain a clause PC ∈ P such that body(PC) ⊆ s1 ∩ s2. Finally, assume π(p, s1) > 0
and body(PC) ⊆ s1 ∩ s2 for a clause PC ∈ P with head(PC) = p. In this case, we find that
Inequality (4.5) and Equation (4.3) yield π(p | s1, p,do(s2)) > π(p | do(s2)).

Furthermore, we demonstrate the necessity of the acyclicity assumption in Lemma 4.2.1 and
Proposition 4.2.2 i).

Example 4.2.1. Consider the following proper ProbLog program that satisfies Occam’s razor.

P: 0.5 :: a← b 0.5 :: b← a 0.5 :: a.

In this case, we find π(a | a, b,do(¬b)) = 1 even though PC := (0.5 :: a ← b) ∈ P yields a clause
with body(PC) = {b}, contradicting statement i) of Proposition 4.2.2.

108 4. Extracting Causal Knowledge from Counterfactuals

Let us now begin with reconstructing the dependence graph graph(P) from the counterfactual
semantics π of P. For a more readable presentation, we introduce the following notions.

Definition 4.2.1 (Situations and Frames). A situation for a proposition p ∈ P is a truth
value assignment s to the remaining propositions in P \ {p}. For two situations s1/2 we call the
number π(p | s1, p,do(s2)) ∈ [0, 1] the change of situations from s1 to s2. Furthermore, the
common support of s1 and s2 is defined by supp(s1, s2) := {p ∈ P : ps1 = ps2} .

Given the dependence graph graph(P) of P we call a truth value assignment f to the par-
ents pa(p) of a proposition p ∈ P a frame for p. Finally, for two frames f1/2 we call the num-
ber π(p | f1, p,do(f2)) ∈ [0, 1] the reframing from f1 to f2.

We compute the dependence graph using the following procedure:

Procedure 4.2.1 (Reconstructing the Dependence Graph). Let p ∈ P be a proposition. If we
find π(p, s) = 0 for all situations s, i.e. π(p) = 0, we set paG(p) = ∅. Otherwise, we compute
the smallest set paG(p) ⊆ P \ {p} such that for every two situations s1/2 with π(p, s1) > 0 we
find π(p | s1, p,do(s2)) = 1 and π(p | s2, p,do(s1)) = 1 whenever paG(p) ⊆ supp(s1, s2). Finally,
we construct the graph G by drawing an arrow from every node in paG(p) to the node p.

Example 4.2.2. Recall the program P with the dependence graph graph(P) in Example 2.2.48.

0.5 :: cloudy

0.6 :: rain← cloudy

0.7 :: sprinkler ← ¬cloudy 0.1 :: sprinkler ← cloudy

0.8 :: wet← rain 0.3 :: wet← sprinkler

0.9 :: slippery ← wet

sprinkler

cloudy rain wet slippery

Assume we aim to find the parents pagraph(P)(slippery) = {wet} of slippery in the dependence
graph graph(P) of the program P. Initially, we discover that slippery is only true when it is wet,
which occurs if it rains or if the sprinkler is on. Consequently, we consider the following situations.

s1 := {cloudy, rain, sprinkler, wet} s2 := {¬cloudy, rain, sprinkler, wet}
s3 := {cloudy,¬rain, sprinkler, wet} s4 := {cloudy, rain,¬sprinkler, wet}
s5 := {¬cloudy,¬rain, sprinkler, wet} s6 := {¬cloudy, rain,¬sprinkler, wet}

Upon examination, we note that π(slippery | si, slippery,do(si)) = 1 for all 1 ≤ i ≤ 6, as all rele-
vant error terms were already observed to be true. Consequently, we investigate the 30 changes of
situations π(slippery | si, slippery,do(sj)) for 1 ≤ i, j ≤ 6, i ̸= j. The WhatIf solver (34) then
confirms that π(slippery | si, slippery,do(sj)) = 1 for every change of situation under considera-
tion. We observe that all the situations s1-s6 only coincide in wet, leading to

paG(slippery) = {wet} = pagraph(P)(slippery)

as the set of parents for slippery in the graph G from Procedure 4.2.1.

Finally, we prove that Procedure 4.2.1 actually computes the dependence graph graph(P) of P.

Lemma 4.2.3. Let P be an acyclic proper ProbLog program that satisfies Occam’s razor. In this
case, Procedure 4.2.1 indeed computes the dependence graph G = graph(P) of P.

4.2 Knowledge Uniquely Determined by Counterfactual Reasoning 109

Proof. Let p ∈ P be a proposition and denote by paG(p) the parents of p in G and by pagraph(P)(p)
the parents of p in the dependence graph graph(P). We show paG(p) = pagraph(P)(p). If π(p) = 0,
we find that π(p, s) = 0 for all situations s. Hence, by Occam’s razor, there is no clause PC ∈ P
with head(PC) = p, and we obtain paG(p) = ∅ = pagraph(P)(p).

Further, assume π(p) > 0. If two situations s1/2 with π(p, s1) > 0 coincide on the par-
ents pagraph(P)(p) of p in the dependence graph, by Definition 2.2.33, we have body(PC) ⊆ s1
if and only if body(PC) ⊆ s2 for every clause PC ∈ P with head(PC) = p. Hence, Propo-
sition 4.2.2 yields π(p | s1, p,do(s2)) = 1 as well as π(p | s2, p,do(s1)) = 1, and we obtain
paG(p) ⊆ pagraph(P)(p).

Next, we need to show that paG(p) ⊇ pagraph(P)(p). Let b ∈ pagraph(P)(p). By Definition 2.2.33,
there exists a clause PC ∈ P with {b,¬b}∩body(PC) ̸= ∅. According to Occam’s razor, body(PC)
extends to a situation s1 with π(p, s1) ̸= 0. Set s2 := (s1 \ {b,¬b}) ∪ ({b,¬b} \ s1), i.e., the
situations s1/2 only differ in the truth value for the proposition b ∈ P. Finally, we apply Proposi-
tion 4.2.2 to obtain π(p | s1, p,do(s2)) < 1. Hence, from the construction of s2, we may conclude
that b ∈ paG(p) as desired.

With the dependence graph available, our next goal is reconstructing the clauses in the pro-
gram P. Let us consider a proposition p ∈ P to compute the clauses defining p. We begin with
the following notion.

Definition 4.2.2 (Clause Search Graph). The clause search graph Search(p) of p is an undi-
rected graph on the frames f of p with π(p, f) > 0. It is given by drawing an edge f1 − f2 if and
only if π(p | f1, p,do(f2)) > π(p | do(f2)). Finally, we equip each edge f1 − f2 with the label f1∩ f2.

Remark 4.2.1. Since P satisfies Occam’s razor, we do not find any clause PC ∈ P such
that body(PC) ⊆ f for a frame f with π(p, f) = 0.

Example 4.2.3. Recall the program P with the dependence graph graph(P) in Example 2.2.48.

0.5 :: cloudy

0.6 :: rain← cloudy

0.7 :: sprinkler ← ¬cloudy 0.1 :: sprinkler ← cloudy

0.8 :: wet← rain 0.3 :: wet← sprinkler

0.9 :: slippery ← wet

sprinkler

cloudy rain wet slippery

Assume we already know the dependence graph graph(P) of the program P and want to recover
the clauses defining wet. Note that there are three frames f with π(wet, f) > 0:

f1 := {rain, sprinkler} f2 := {¬rain, sprinkler} f3 := {rain,¬sprinkler}

The WhatIf solver (34) yields π(wet | fi, wetdo(fi)) = 1 > π(wet | do(fi)) for 1 ≤ i ≤ 3, and we
obtain

π(wet | f1, wet,do(f2)) = 0.3488... > 0.3 = π(wet | f2)
π(wet | f1, wet,do(f3)) = 0.9302... > 0.8 = π(wet | f3)
π(wet | f2, wet,do(f3)) = 0.8 = π(wet | f3).

This yields the following clause search graph Search(wet).

110 4. Extracting Causal Knowledge from Counterfactuals

f1

f2

f3

Now that we have the clause search graph, let us uncover the first clause defining p, which we
denote as PC0,p.

Lemma 4.2.4 (Finding a Clause). Let P be an acyclic proper ProbLog program in normal form.
Let body0,p = f1 ∩ f2 be a minimal label of an edge f1 − f2 in the clause search graph Search(p) of

a proposition p ∈ P, that is, there exists no edge f′1 − f′2 with label f′1 ∩ f
′
2 ⊊ body0,p. In this case,

we find a unique clause PC0,p ∈ P with head(PC0,p) = p, with body(PC0,p) = body0,p and with
probability

π(PC0,p) = 1− (1− π(p | do(f1))) · (1− π(p | do(f2)))
1− π(p | do(f2))− π(p | do(f1)) · (1− π(p | f1, p,do(f2)))

. (4.6)

Proof. According to Proposition 4.2.2 and Definition 4.2.2, we find a clause PC0,p ∈ P such that

body(PC0,p) ⊆ body0,p .

If we assume that body(PC0,p) ̸= body0,p, by minimality of body0,p, this clause would induce
an edge not present in the clause search graph Search(p). Since P is assumed to be in normal
form, we further obtain that PC0,p ∈ P is the unique clause with body(PC0,p) = body0,p and
with head(PC0,p) = p. Finally, consider Equation (4.3) of Lemma 4.2.1. This allows us to see
that

π(p | f1, p,do(f2)) = 1− 1− π(p | do(f2))
π(p | do(f1))

(
1− 1− π(p | do(f1))

1− π(PC0,p)

)
.

From this, solving for π(PC0,p) yields the desired result.

Example 4.2.4. In Example 4.2.3, we find that f1 − f2 yields an edge of the clause search
graph Search(wet) with minimal label body0,wet := f1∩ f2 = {sprinkler}. Further, Equation (4.6)
and a calculation with the WhatIf solver (34) yield that

π(PC0,wet) := 1− 0.14 · 0.7
1− 0.3− 0.86 · (1− 0.3488...)

= 0.3.

Overall, we found the clause PC0,wet := (0.3 :: wet ← sprinkler) that indeed appears in the
program P of Example 4.2.3. .

To proceed, we observe that the whole counterfactual reasoning π is not necessary to recon-
struct the clause PC0,p ∈ P. In fact, we only require the data provided by a counterfactual
backbone.

Definition 4.2.3 (Counterfactual Backbone). A counterfactual backbone (of a ProbLog pro-
gram P) comprises the probabilities π(p | do(f1/2)) and the reframings π(p | f1, p,do(f2)) for all
frames f1/2 of a proposition p ∈ P.

4.2 Knowledge Uniquely Determined by Counterfactual Reasoning 111

Example 4.2.5. The counterfactual backbone of the program P in Example 4.2.3 has the follow-
ing form.

π(cloudy) = 0.5, π(sprinkler | do(cloudy)) = 0.1, π(sprinkler | do(¬cloudy)) = 0.7,

π(rain | do(cloudy)) = 0.6, π(rain | do(¬cloudy)) = 0,

π(wet | do(rain, sprinkler)) = 0.86,..., π(wet | do(¬rain,¬sprinkler)) = 0,

π(slippery | do(wet)) = 0.9, π(slippery | do(¬wet)) = 0,

π(sprinkler | cloudy, sprinkler, do(¬cloudy)) = 0.7, π(rain | cloudy, rain,do(¬cloudy)) = 0,

π(sprinkler | ¬cloudy, sprinkler, do(cloudy)) = 0.1, π(rain | ¬cloudy, rain,do(cloudy)) = 0,

π(wet | sprinkler, rain, wet, do(¬sprinkler,¬rain)) = 0,

π(wet | sprinkler, rain, wet, do(sprinkler,¬rain)) = 0.348..., ...,

π(wet | ¬sprinkler, rain, wet, do(sprinkler, rain)) = 1,

π(splippery | wet, splippery,do(¬wet)) = 0, π(splippery | ¬wet, splippery,do(wet)) = 0

Further, we need the following result to compute the counterfactual backbone of the pro-
gram P1,p := P \ {PC0,p}.

Lemma 4.2.5 (Modularity of Counterfactual Backbones). Let P be an acyclic proper ProbLog pro-
gram, and consider a clause PC0 ∈ P with head(PC0) := p ∈ P. Additionally, fix frames f1/2 for p
such that π(p, f1/2) > 0. We denote the counterfactual backbone of the program P0 := P \ {PC0}
by π0. If body(PC0) ̸⊆ fi, we obtain

π0(p | do(fi)) = π(p | do(fi)). (4.7)

Otherwise, we obtain

π0(p | do(fi)) =
π(p | do(fi))− π(PC0)

1− π(PC0)
. (4.8)

If body(PC0) ̸⊆ f1 and body(PC0) ̸⊆ f2, we obtain

π0(p | f1, p,do(f2)) = π(p | f1, p,do(f2)). (4.9)

If body(PC0) ⊆ f1 ∩ f2, we obtain

π0(p | f1, p,do(f2)) = π(p | f1, p,do(f2))−
1− π(p | f1, p,do(f2))
π(p | do(f1))− π(PC0)

· π(PC0). (4.10)

Further, assume that body(PC0) ⊆ f2 while body(PC0) ̸⊆ f1. We obtain

π0(p | f1, p,do(f2)) =
π(p | f1, p,do(f2))− π(PC0)

1− π(PC0)
. (4.11)

Finally, assume that body(PC0) ̸⊆ f2 while body(PC0) ⊆ f1. We obtain

π0(p | f1, p,do(f2)) =
π(p | f2, p,do(f1))− π(PC0)

π(p | do(f1))− π(PC0)
· π(p | do(f2)). (4.12)

112 4. Extracting Causal Knowledge from Counterfactuals

Proof. Equations (4.7) and (4.9) hold trivially, since PC0 is not applicable in either f1 or f2. For
Equation (4.8) we calculate

π(p | do(fi)) = π

∨

PC∈P
head(PC)=p
body(PC)⊆fi

u(PC) ∨ u(PC0)

 =

= π

∨

PC∈P0

head(PC)=p
body(PC)⊆fi

u(PC)

+ π(PC0)− π(PC0)π

∨

PC∈P0

head(PC)=p
body(PC)⊆fi

u(PC)

(4.1)
=

= π0 (p | do(fi)) + π(PC0)− π(PC0)π0 (p | do(fi))

and solve for π0 (p | do(fi)). For Equation (4.10) we calculate

π(p | f1, p,do(f2))
(4.2)
=

= π

∨

PC∈P0

head(PC)=p
body(PC)⊆f2

u(PC) ∨ u(PC0)

∣∣∣∣∣∣∣∣∣∣∣
∨

PC∈P0

head(PC)=p
body(PC)⊆f1

u(PC) ∨ u(PC0)

Def. of cond.

prob.
=

=

π

u(PC0) ∨

∨

PC∈P0

head(PC)=p
body(PC)⊆f2

u(PC) ∧
∨

PC∈P0

head(PC)=p
body(PC)⊆f1

u(PC)

π

∨

PC∈P0

head(PC)=p
body(PC)⊆f1

u(PC) ∨ u(PC0)

= t1 × t2

where we find

t1 :=

π

u(PC0) ∨

∨

PC∈P0

head(PC)=p
body(PC)⊆f2

u(PC) ∧
∨

PC∈P0

head(PC)=p
body(PC)⊆f1

u(PC)

π0(p | do(f1))

4.2 Knowledge Uniquely Determined by Counterfactual Reasoning 113

t2 :=
π0(p | do(f1))

π

∨

PC∈P0

head(PC)=p
body(PC)⊆f1

u(PC) ∨ u(PC0)

.

Expanding the outer ∨ and repeatedly applying Equation (4.1) and (4.3) yields

t1 =
π(PC0)

π0 (p | do(f1))
+ π0 (p | f1, p,do(f2)) (1− π(PC0))

t2 =
π0 (p | do(f1))

π0 (p | do(f1)) (1− π(PC0)) + π(PC0)
.

Now, solving for π0 (p | f1, p,do(f2)) and Equation (4.1) yield Equation (4.10).
For Equation (4.11) we expand the ∨ before u(PC0) in

π(p | f1, p,do(f2)) = π

∨

PC∈P0

head(PC)=p
body(PC)⊆f2

u(PC) ∨ u(PC0)

∣∣∣∣∣∣∣∣∣∣∣
∨

PC∈P0

head(PC)=p
body(PC)⊆f1

u(PC)

and repeatedly apply Equation (4.1) and (4.3). Finally, Equation (4.12) follows from Equa-
tion (4.11) with the identity

π0(p | f1, p,do(f2))
(4.1)&(4.2)

=
π0(p | f2, p,do(f1))π0(p | do(f2))

π0(p | do(f1))
.

With Lemma 4.2.5 at hand, we now recover the whole program P with the following procedure.

Procedure 4.2.2. We start with a counterfactual reasoning or a counterfactual backbone π,
which is known to stem from the counterfactual semantics of a hidden acyclic proper ProbLog
program P in normal form that satisfies Occam’s razor. In addition, we assume that we are given
the dependence graph graph(P) of P. We compute the ProbLog program P̃ according to the
following algorithm.

P̃ := ∅
for p ∈ P do

P̃p := ∅; i := 0; π0,p := π;
while πi,p(p|do(f)) ̸= 0 for a frame f do

Compute the clause search graph Searchi(p) according to the counterfactual backbone πi,p
Choose edge with minimal label body(PCi,p) in Searchi(p)
Compute π(PCi,p) according to Equation (4.6)
PCi,p := (π(PCi,p) :: p← (PCi,p)) as in Lemma 4.2.4

P̃p := P̃p ∪ {PCi,p}
i = i+ 1
Compute counterfactual backbone πi,p with Equations (4.7) - (4.12) as in Lemma 4.2.5

end while
P̃ := P̃ ∪ P̃p

end for

114 4. Extracting Causal Knowledge from Counterfactuals

First, we initialize P̃ := ∅. Further, we choose a proposition p ∈ P and initialize P̃p := ∅.
If π(p | do(f)) = 0 for all frames f, we proceed to the next proposition q ∈ P \ {p}. Otherwise,
Lemma 4.2.4 uncovers a clause PC0,p ∈ P with head(PC0,p) = p, and we set P̃p := {PC0,p}.

Lemma 4.2.5 computes the counterfactual backbone π1,p of the program P1,p := P \ {PC0,p}.
If we find that π1,p(p | do(f)) = 0 for all frames f of p ∈ P, we know that PC0,p ∈ P was the only
clause of P with head(PC0,p) = p and proceed to the next proposition q ∈ P \ {p}. Otherwise, we
apply Lemma 4.2.4 to the counterfactual backbone π1,p to get a clause PC1,p ∈ P1,p := P \ {PC0,p}
with head(PC1,p) = p.

We repeatedly recover clauses with head p in the programs Pi,p := P \ {PC1,p, ..., PCi,p} and
set P̃p := {PC1,p, ..., PCi,p} until we find πn,p(p | do(f)) = 0 for all frames f, where πn,p is the
counterfactual backbone of the program Pn,p. If this is the case, according to Occam’s razor, we
conclude that Pn,p contains no clause with head p and proceed to the next proposition q ∈ P \ {p}.
Finally, we obtain the ProbLog program P̃ :=

⋃
p∈P

P̃p.

Example 4.2.6. Recall the situation in Example 4.2.4. Lemma 4.2.5 now computes the following
counterfactual backbone of the program P1,wet := P \ {PC0,wet}.

π(cloudy) = 0.5, π(sprinkler | do(cloudy)) = 0.1, π(sprinkler | do(¬cloudy)) = 0.7,

π(rain | do(cloudy)) = 0.6, π(rain | do(¬cloudy)) = 0,

π(wet | do(rain, sprinkler)) = 0.8,..., π(wet | do(¬rain,¬sprinkler)) = 0,

π(slippery | do(wet)) = 0.9, π(slippery | do(¬wet)) = 0,

π(sprinkler | cloudy, sprinkler, do(¬cloudy)) = 0.7, π(rain | cloudy, rain,do(¬cloudy)) = 0,

π(sprinkler | ¬cloudy, sprinkler, do(cloudy)) = 0.1, π(rain | ¬cloudy, rain,do(cloudy)) = 0,

π(wet | sprinkler, rain, wet, do(¬sprinkler,¬rain)) = 0,

π(wet | sprinkler, rain, wet, do(sprinkler,¬rain)) = 0, ...,

π(wet | ¬sprinkler, rain, wet, do(sprinkler, rain)) = 1,

π(slippery | wet, slippery,do(¬wet)) = 0, π(slippery | ¬wet, slippery,do(wet)) = 0

This allows us to apply Lemma 4.2.4 again to uncover the clause

PC1,wet := (0.8 :: wet← rain) ∈ P1,wet ⊆ P.

In P2,wet := P \ {PC0,wet, PC1,wet} we find π(wet | do(f)) = 0 for all frames f of wet, and we
conclude that we recovered all clauses PC ∈ P with head(PC) = wet.

Procedure 4.2.2 enables us to prove the following theorem, which is the main result of this
chapter.

Theorem 4.2.6 (Main Result). The counterfactual probabilities π(ϕ | e,do(i)) determine each
acyclic proper ProbLog program P in normal form that satisfies Occam’s razor up to syntactic
equality. In particular, we find that Procedure 4.2.2 terminates with P = P̃.

Proof. For a frame f, we observe that π(p | do(f)) > 0 only when there exists a clause PC ∈ P
with head(PC) = p. By Occam’s razor, this implies that π(p, f) > 0, and Proposition 4.2.2 ensures
the presence of an edge in the clause search graph Search(p). Therefore, Lemma 4.2.4 not only
guarantees the termination of Procedure 4.2.2 but also ensures that P̃ ⊆ P.

Assume that there is a clause PC ∈ P \ P̃, and let P̃p := {PC1,p, ..., PCn,p} be the set of all

clauses in P̃ with head(PCi,p) = p = head(PC). In particular, if PC ∈ P \ P̃p, by properness

extending body(PC) to a frame f yields πp,n(p | do(f)) > 0, contradicting the construction of P̃p

in Procedure 4.2.2.

4.3 Second Result: Equivalence of Knowledge and Counterfactual Reasoning 115

4.3 Second Result: Equivalence of Knowledge and Counter-
factual Reasoning

According to Theorem 4.2.6, counterfactual reasoning uniquely determines the particular proba-
bilistic Aristotelian knowledge expressed in acyclic proper ProbLog programs in normal form that
satisfy Occam’s razor. Proposition 4.1.1 interprets the assumption that a ProbLog program is
in normal form as a pre-processing step, which implies that it is not a restriction on our result.
Additionally, when given a set of ProbLog clauses, the assertion of properness only excludes a
parameter set of Lebesgue measure zero. Hence, in some sense, almost all ProbLog programs are
proper. Notably, Example 4.1.4 describes a special case from a probabilistic perspective.

Acyclicity and Occam’s razor remain the primary restrictions in Theorem 4.2.6. Example 4.2.1
demonstrates that acyclicity is necessary to obtain Statement i) in Proposition 4.2.2. We conclude
that we require acyclicity to establish the identities (4.1) and (4.3) in Lemma 4.2.1, on which
our proof relies. However, at the current stage, we are unable to provide an example of two
cyclic proper ProbLog programs in normal form that satisfy Occam’s razor and yield the same
counterfactual semantics. Since Occam’s razor is widely used as a heuristic in machine learning,
and humans tend to prefer simple explanations over complicated ones, we consider it a mild
restriction of Theorem 4.2.6.

In summary, our result suggests that counterfactual reasoning determines almost all well-
written ProbLog programs, offering full explanation up to syntactic equality. Here, “well-written”
refers to programs in normal form that satisfy Occam’s razor, and “almost all” means that for
a fixed ProbLog program, the statement may only fail for a parameter set of Lebesgue measure
zero. Overall, ProbLog seems to be the correct choice of language for counterfactual reasoning in
the Boolean case. Furthermore, we conclude that probabilistic Aristotelian knowledge not only
enables counterfactual reasoning but is often equivalent to counterfactual reasoning.

116 4. Extracting Causal Knowledge from Counterfactuals

Chapter 5

Data-Based Counterfactual
Reasoning

Statement of Contribution

This chapter builds upon the material presented by Rückschloß and Weitkämper (53), where
Kilian Rückschloß contributed the main idea and proofs of all results, while Felix Weitkämper
contributed the running example.

This chapter improves on that contribution with:

• more detailed proofs;

• placing our results in the context of Theorem 3.4.6;

• a discussion of the assumptions in Theorem 5.2.1.

118 5. Data-Based Counterfactual Reasoning

5.1 Counterfactual Reasoning and Program Induction

While observing the world, humans often draw counterfactual conclusions – reasoning about how
events might have unfolded under different circumstances. In artificial intelligence, we now also
aim to infer models of the world that support counterfactual reasoning based on observational
data.

Kiesel’s WhatIf solver (34) establishes the counterfactual reasoning of Theorem 3.4.6 for
ProbLog programs (21; 26) that provide full explanations. However, note that ProbLog programs
are commonly induced from observations sampled from a distribution of interest. Is it feasible to
use these programs for counterfactual reasoning? Is the counterfactual reasoning these programs
provide uniquely determined by the induced distribution in Definition 3.2.5?

As in Chapter 4, we fix a propositional alphabet P and restrict ourselves to the study of acyclic
ProbLog programs within the fragment of ProbLog clauses.

Convention. In the following, we restrict the term ProbLog program to programs in the
fragment of ProbLog clauses that provide full explanation. In fact, we identify such a ProbLog
program with a set P of ProbLog clauses.

The following example illustrates that counterfactual reasoning, as provided by ProbLog pro-
grams, is generally not uniquely determined by the underlying distribution.

Example 5.1.1. Assume, for example, that a patient is treated, denoted treatment, with proba-
bility 0.5. If we treat a patient, we expect that he recovers, denoted recovery, with a probability
of 0.7; otherwise, he recovers with a probability of 0.5. The resulting distribution can be encoded
with the following two programs P1/2.

P1 : 0.5 :: treatment 0.5 :: recovery 0.4 :: recovery ← treatment

P2 : 0.5 :: treatment 0.5 :: recovery ← ¬treatment 0.7 :: recovery ← treatment

Moreover, assume that the patient recovers while not treated. What is the probability that he
would have recovered under treatment?

In both programs P1/2, we conclude from our observations that the patient recovers due to
the second clause, i.e., we conclude that the second clause holds in the situation we observe. If
we had also treated the patient under program P1, he would still have recovered, since the second
clause in P1 still applies under treatment. Hence, we obtain a probability of one for the patient
to recover under treatment. Whereas, in program P2, the second clause is not applicable under
treatment. In this case, if the patient were treated in program P2, he could only recover due to
the third clause, resulting in a probability of 0.7 for recovery under treatment.

Moreover, the programs P1/2 give rise to the same dependence graph and predict the same
effect for every intervention.

As we can see, the classical distribution semantics defined in Definition 3.2.5 does not uniquely
determine the outcome of a counterfactual query. Therefore, even with perfect learning, we can
only ensure that we obtain a program representing the correct distribution. In particular, each
structure learning algorithm fed with samples from an observed distribution cannot distinguish
between the programs P1 and P2; that is, we cannot guarantee that a learned program will
accurately answer counterfactual queries.

Furthermore, as demonstrated in Chapter 4, we find that probabilistic Aristotelian knowledge
not only enables counterfactual reasoning but, in many cases, the probabilistic Aristotelian knowl-
edge represented by a ProbLog program is equivalent to the ability of counterfactual reasoning
itself. From this we can conclude that inferring models that support counterfactual reasoning often
involves determining ProbLog programs up to syntactic equality. In this chapter, we thus intro-
duce a fragment of ProbLog in which each program is determined up to syntactic equality by its
dependence graph, i.e., the causal diagram and the corresponding distribution. Furthermore, we
argue that this framework provides a suitable setting for the currently available structure learning
methods described in Section 2.2.4 that supports counterfactual reasoning.

5.2 An Assumption for Deriving Causal Knowledge from Observations 119

5.2 An Assumption for Deriving Causal Knowledge from
Observations

Generally, in structure learning, the objective is to derive a program that describes a given data
set based on prior knowledge encoded by a setting (as defined in Section 2.2.4). In most cases, the
data consist of observations. Additionally, we assume that our data consist of samples drawn from
the distribution induced by a hidden ProbLog program P̃ of interest, and the prior knowledge
includes the correct language bias – specifically, the dependence graph of P̃.

To assess how well a candidate program P represents our dataset, we use statistical tests.
However, these tests only measure how well the induced distribution of the program P fits a given
set of observations. They do not provide information on the causal mechanism that generates
our data. Consequently, we cannot determine whether the causal mechanism represented by a
candidate ProbLog program P aligns with the causal mechanism underlying our data – the one
described by P̃.

Example 5.2.1. Consider the programs P1 and P2 of Example 5.1.1. Although they repre-
sent different causal models leading to different counterfactual estimations, they yield the same
distribution semantics and share the same dependence graph.

Thus, whenever we choose P̃ := P1 or P̃ := P2 as the hidden program, we sample from the
same distribution in both cases. This means that even with the correct language bias, a structure
learning algorithm cannot determine which of the two programs actually generated the provided
data unless additional knowledge is provided.

More drastically, Example 5.2.1 illustrates that without additional prior knowledge, even under
the assumption of perfect learning, it is only possible to learn a program P that represents the
correct distribution. Specifically, we cannot guarantee that a learned program P will answer
counterfactual queries correctly.

Theorem 4.2.6 states that counterfactual reasoning determines acyclic proper ProbLog pro-
grams in normal form that satisfy Occam’s razor up to syntactic equality. If we now once again
restrict ourselves to this fragment of ProbLog and assume that the hidden ProbLog program P̃
and the learned ProbLog program P are acyclic proper in normal form and satisfy Occam’s razor,
learning a program P with correct counterfactual reasoning amounts to reconstructing P̃ up to
syntactic equality. The main result of this chapter now states that all acyclic proper positive
ProbLog programs in normal form that satisfy Occam’s razor are uniquely determined by their
dependence graph and their underlying distribution.

Theorem 5.2.1. Every acyclic proper positive ProbLog program in normal form P that satisfies
Occam’s razor is determined up to syntactic equality by its dependence graph graph(P) and the
induced distribution π.

Proof. We proceed by induction on the number n of nodes in the dependence graph graph(P).

n = 1: In this case, the program P consists only of one clause π :: p ←. Hence, we set π := π(p)
and are done.

n > 1: Choose a sink h ∈ P of graph(P). Furthermore, denote by P \ h the program that results
from P if we erase all clauses with head h. Due to maximality, h does not occur in the
body of any other clause. In other words, P \ h induces the same distribution on P \ {h}
as the original program P, and it has the graph graph(P) \ h as its dependence graph.
Here, graph(P) \ h refers to the graph resulting from graph(P) when we remove the node h
along with all the edges that point to it. Finally, note that the program P \ h is acyclic,
proper, positive, and in normal form, satisfying Occam’s razor. Therefore, by the induction
hypothesis, we can reconstruct the program P \ h from the given data.

We are now left with reconstructing the clauses that define h itself. Observe that the
parents b ∈ pa(h) of h in graph(P) are the only propositions that may appear in the body

120 5. Data-Based Counterfactual Reasoning

of a clause defining h. Furthermore, each of these occurrences is positive. We consider the
function

IndPh :P(pa(h))→ [0, 1] T 7→ π(h|{t,¬s : t ∈ T, s ∈ pa(h) \ T}),

where P() denotes the power set operator. Let T ⊆ pa(h) and assume that

π

h ∧ ∧
t∈T

t ∧
∧

s∈pa(h)\T

¬s

 > 0 (5.1)

to obtain

IndPh (T) = π(h|{t,¬s : t ∈ T, s ∈ pa(h) \ T}) =

π

h ∧ ∧
t∈T

t ∧
∧

s∈pa(h)\T

¬s

π

∧
t∈T

t ∧
∧

s∈pa(h)\T

¬s

Corollary 2.2.4

=

=

π

∨

PC∈P
body(PC)⊆T
head(PC)=h

u(PC) ∧
∧
t∈T

t ∧
∧

s∈pa(h)\T

¬s

π

∧
t∈T

t ∧
∧

s∈pa(h)\T

¬s

 . (5.2)

As the program P is acyclic, Corollary 2.2.4 yields for every selection ϵ that we find

ω |=
∧
t∈T

t ∧
∧

s∈pa(h)\T

¬s

for the stable model ω of LP(P) ∪ ϵ if and only if

ϵ |=
∧
p∈T

∨

PC∈P
head(PC)=p
body(PC)⊆T

u(PC)

 ∧
∧

PC∈P
q∈P\(T∪{h})
head(PC)=q
body(PC)⊆T

¬u(PC). (5.3)

Combing Equation (5.2) and (5.3) with the independence of the error terms yields

IndPh (T) := π

∨

PC∈P
body(PC)⊆T
head(PC)=h

u(PC)

 =
∑

PC1,...,PCk∈P
k∈N, body(PCi)⊆T

head(PCi)=h

(−1)k
k∏
i=1

π(PCi). (5.4)

Finally, assume that T ⊆ pa(P) is the body of a clause in P. Applying Occam’s razor, we
conclude that Equation (5.1) holds, and Equation (5.4) implies that IndPh (S) < IndPh (T) for
all S ⊆ pa(h) with S ⊊ T .

On the other hand, suppose that IndPh (S) < IndPh (T) for all S ⊆ pa(h) with S ⊊ T . We
deduce from Equation (5.4) that T ⊆ pa(P) constitutes the body of a clause PC ∈ P with

5.3 Third Result: A Language Bias for Data-Based Counterfactual Reasoning 121

head h. Furthermore, since P is in normal form, we recursively obtain the parameter π(PC)
for every clause PC ∈ P: If the body of PC is minimal inP we find π(PC) = IndPh (body(PC)).
Additionally, during the recursion step, Equation (5.4) yields a one-dimensional linear equa-
tion for the parameter of interest.

Remark 5.2.1. If we estimate the functions IndPh using relative frequencies, we obtain a structure
learning algorithm that recovers an acyclic, proper, positive ProbLog program in normal form,
satisfying Occam’s razor. This algorithm relies on a known causal diagram and a sufficiently large
set of independent samples. The resulting distributions (one for every counterfactual query) are
guaranteed to converge in probability.

Finally, let us assume that we apply a structure learning algorithm as described in Section 2.2.4,
with a language bias that encodes the dependence graph graph(P̃), to obtain a program P. Fur-
thermore, assume that we have learned perfectly, that is, that the program P encodes the same
distribution as P̃. Now, if we also assume that both programs P and P̃ are acyclic, proper, posi-
tive ProbLog programs in normal form that satisfy Occam’s razor, Theorem 5.2.1 implies that P
and P̃ are syntactically equal. In other words, P captures the causal content of P̃.

Since, without background knowledge, each currently available structure learning algorithm
only searches for positive programs that fit a given dataset, the assumption to learn positive
ProbLog programs in normal form is easily realized. Causally, the absence of background knowl-
edge leads us to assume that our data is generated by a positive ProbLog program.

Corollary 5.2.2. Assume that we are given data sampled from a hidden proper positive ProbLog
program in normal form P̃ that satisfies Occam’s razor, and assume that we are aware of the
dependence graph graph(P̃) of P̃.

Every structure learning algorithm that can learn a proper positive ProbLog program in normal
form that satisfies Occam’s razor with the correct dependence graph and the correct distribution
reconstructs P̃ from the provided data up to syntactic equality. In particular, the result of this
structure learning algorithm supports counterfactual reasoning. □

5.3 Third Result: A Language Bias for Data-Based Coun-
terfactual Reasoning

Example 5.1.1 in Section 5.1 illustrates that the distribution semantics of Definition 3.2.5 does
not uniquely determine the results of counterfactual queries for ProbLog programs. Consequently,
utilizing currently available structure learning algorithms for counterfactual reasoning is infeasible.
Additionally, Example 5.1.1 highlights the insufficiency of factual knowledge, represented by a dis-
tribution and causal relations encoded in a causal diagram, for Boolean counterfactual reasoning.
Interestingly, this finding contrasts with the theory of linear functional causal models (41, §5.2.1).

Furthermore, we restrict our focus to the fragment of acyclic proper ProbLog programs in
normal form that satisfy Occam’s razor. According to Theorem 4.2.6, inducing a program with
correct counterfactual reasoning is tantamount to reconstructing the program describing the causal
generating mechanism of the data up to syntactic equality. Importantly, learning programs un-
der a coarser notion of equivalence is insufficient for counterfactual reasoning. Our main result,
Theorem 5.2.1, establishes that acyclic proper positive ProbLog programs in normal form that sat-
isfy Occam’s razor are determined up to syntactic equality by their distribution and dependence
graph. Consequently, when provided with the correct language bias, the currently available struc-
ture learning algorithms described in Section 2.2.4 can recover these programs, thus supporting
counterfactual reasoning in this setting.

As discussed in Section 4.3, the restriction of a ProbLog program to be proper in normal form
can be considered mild. Occam’s razor is also a reasonable and common assumption in program
induction. Therefore, acyclicity and positivity remain the primary restrictions in Theorem 5.2.1.

122 5. Data-Based Counterfactual Reasoning

The necessity of the positivity assumption is illustrated in Example 5.1.1. Additionally, acyclicity
is crucial for obtaining Equation (5.4), which underpins the proof of Theorem 5.2.1. Exploring
the removal of the acyclicity assumption from Theorem 5.2.1 could be an interesting direction
for future research. Furthermore, determining the exact equivalence classes of ProbLog programs
representing the same distributions and predicting the behavior of available structure learning
algorithms for more general fragments of ProbLog are further promising directions for future
work.

Chapter 6

Perspectives for Further Research
and Conclusion

In this concluding chapter, we embed the material presented so far in a broader context and
outline directions for future research. We begin by recalling three core concepts for reasoning in
artificial intelligence, namely uncertainty, relations among individuals, and causality, along with
their mathematical formalization.

State of the Art: Three Core Concepts of Reasoning

When contemplating the world around us, we often encounter uncertainty in our knowledge. For
example, when planning a vacation, we may be uncertain about the weather at our destination.
Although we might assess that rainy weather in South Tyrol is unlikely during September, we
cannot be entirely sure it will not rain. This thesis shows how to use probabilities to represent
uncertainty about knowledge, an approach that results, among others, in probabilistic graphical
models such as Bayesian networks and Markov random fields (42, Chapter 3).

In organizing the real world, we rely on relationships between components or elements of a
given domain. Take, for instance, a wedding party, where our reasoning involves the domain of
guests. Certain guests may be friends with each other, children of another guest, or married to each
other. These relationships play a crucial role in structuring our understanding of the world. In this
thesis, we employ first-order logic to formalize relations between individuals of a given domain.
This logic-based approach leads us to the framework of logic programming in Section 2.2.4.

Combining probabilistic and logic-based approaches, the field of statistical relational artificial
intelligence (44) aims to reason about uncertain knowledge regarding relations between elements
of a given domain. Returning to the example of the wedding party, we may assume that friends
of smokers are more likely to smoke themselves, meaning that we are uncertain about whether
friends of smokers necessarily smoke. In addition, we may assume that all individuals with the
same number of smoking friends are equally likely to smoke themselves. Such interchangeability
assumptions may speed up calculations (11) or reduce the space of possible descriptions for a
dataset (28) in the learning task. Statistical relational artificial intelligence gives rise, among other
things, to Markov logic networks (46) and probabilistic logic programming under the distribution
semantics (55; 43), which we discuss in Sections 2.2.3 and 2.2.4.

We often explain the world in terms of causal mechanisms. We typically understand our
environment by explaining observations, i.e., effects, through self-evident prior knowledge, i.e.,
causes. Consider the scenario of a car accident in which a vehicle collides with a pedestrian. If we
consider the vehicle hitting the pedestrian as self-evident prior knowledge, this provides a causal
explanation for the injuries sustained by the pedestrian. This leads us to the conclusion: “The
collision with the vehicle caused injuries to the pedestrian.”. Therefore, we not only gain factual

124 6. Perspectives for Further Research and Conclusion

knowledge of the pedestrian’s injuries, but we also have an explanation for these injuries resulting
in Aristotelian knowledge as introduced in Section 2.1.

Pearl (41) argues that causal reasoning enables us to predict the effect of external interventions
and to reason counterfactually. In our example, issuing a speed limit would constitute an external
intervention that can avoid accidents caused by the driver speeding. Such considerations are
relevant in domains like medicine, where we may ask what happens if we actively intervene and
give the patient some medication.

Counterfactual reasoning is reasoning about “What if ...?”. In our example, we may ask:
“What if there had been a speed limit? Would the pedestrian still be injured?”. Once we explain
the observed accident with the driver speeding, we may conclude that the pedestrian would not
have been injured had there been a speed limit. If we, in contrast, explain the accident with the
driver being drunk, we are likely to judge that the pedestrian would still be injured had there
been a speed limit. Counterfactual reasoning is relevant in fields such as pharmacy, where we may
inquire: “What if a patient in the control group of a pharmaceutical study had received treatment?
Would he have recovered?”. In decision-making, we might ask: “What if I had taken a bus earlier?
Would I still have been late for my job interview?”. Counterfactual reasoning is crucial in formally
defining ethical notions such as responsibility, blame, fairness, or harm (30; 7; 14). In our example,
we are more likely to blame the driver if we believe that the accident had not happened if he had
not been speeding. In general, counterfactuals enable humans to make sense of the past, plan
future courses of action, make emotional and social judgments, and adapt their behavior (31).

This thesis essentially builds on Pearl’s causal models (41) as introduced in Section 2.3.1,
where he represents causal mechanisms with deterministic functional relationships. Specifically,
he first distinguishes between internal, i.e., explained variables V, and external, i.e., unexplained
variables U. The causal relations between the internal variables V ∈ V are then modeled by
setting V := fV (U,V) for deterministic functions fV (U,V) in the internal and external variables.
Solving the corresponding system of equations then yields Aristotelian knowledge, that is, we gain
factual knowledge represented by the solution and an explanation in terms of the external vari-
ables. Finally, Pearl (41) introduces probability in his causal models by specifying a distribution on
the external variables, resulting in probabilistic causal models. An external intervention, forcing
an internal variable V to attain the value v, is realized by replacing the equation V := fV (U,V)
with V := v. Counterfactual reasoning is then realized by combining interventions with observa-
tions, that is, conditional probabilities.

We use Bochman’s logic of causality (10) as introduced in Section 2.3.3 to further investigate the
assumption that causal mechanisms should be modeled by deterministic functional relationships.
Bochman (10) aims for a logical theory of causality. Initially, he represents factual knowledge
or observations about the world using propositional formulas ϕ. Inspired by Aristotle’s Poste-
rior Analytics (4), he views causal reasoning as a binary relation ⇒ on factual knowledge, i.e.
propositional formulas that adhere to well-motivated axioms. Here, ϕ ⇒ ψ means that a causal
explanation of ϕ also explains ψ. Representing causal reasoning, i.e., the relation⇒, through rules
of the form ϕ⇒ ψ for propositional formulas ϕ and ψ, results in Bochman’s causal theories (10). If
no cyclic causal relationships are at play, Bochman’s causal theories (10) align with Pearl’s causal
models (41) and abductive logic programming under the supported model semantics (22). This
yields a causal interpretation for acyclic abductive logic programs and a deeper understanding of
the reasoning in Pearl’s Boolean causal models (41).

First Contribution: A Theory of Boolean Cyclic Causal Reasoning

This thesis focuses on causal reasoning in the Boolean case, where all variables possibly take on
two values, represented by true and false. Although Pearl’s causal models (41), abductive logic
programs (22) and Bochman’s causal theories (10) provide a good description of acyclic causal
reasoning, in applications, one may also encounter situations with cyclic causal relationships. For
example, in economics, an increase in price usually causes a decrease in demand, while an increase
in demand causes an increase in price.

125

Once cyclic causal relationships are at play, Pearl’s causal models (41) may not be well-defined,
and on the logic programming side, we have to consider different proposals for the semantics of an
abductive logic program: the supported model semantics (25), the minimal model semantics (59),
and the stable model semantics (27).

In Section 3.1, we observe that Bochman’s causal theories may yield counterintuitive results
when cyclic causal relationships are considered. We explain these counterintuitive results by
Bochman (10) allowing for cyclic and infinite explanations, and propose avoiding these cyclic and
infinite explanations by explicitly stating the prior knowledge with which an explanation must
start. Extending Bochman’s framework (10) with this prior knowledge yields abductive causal
theories, which are essentially equivalent to abductive logic programs under the stable model
semantics (22) as shown in Theorem 3.1.7. We conclude that abductive logic programming (22)
under the stable model semantics (27) emerges as the framework of choice for deterministic causal
reasoning.

Second Contribution: Unifying Causal Reasoning across Widespread
Formalisms in Statistical Relational Artificial Intelligence

Although frameworks in statistical relational artificial intelligence often lack the dimension of
causal reasoning, Pearl’s causal models (41) and Bochman’s causal theories (10) cannot repre-
sent relations between individuals in a given domain. Additionally, Bochman’s logical theory of
causality cannot handle uncertain knowledge. This thesis aims to augment statistical relational
artificial intelligence with causal reasoning and facilitate probabilistic causal reasoning that cap-
tures relations in a given domain. Here, we focus on the Boolean case, where all random variables
of interest take on two values, represented by true or false. To avoid reinventing the wheel for
causal reasoning within every formalism in statistical relational artificial intelligence, we take a
generic approach; that is, we introduce causal reasoning in a formalism that subsumes as many
frameworks as possible.

Section 3.2 merges Markov logic networks (46) with abductive logic programming (22) into
weighted abductive logic programming – a formalism tailored to causal reasoning under uncer-
tainty. In Section 3.4, we demonstrate that weighted abductive logic programming encompasses
several widely used formalisms in statistical relational artificial intelligence, including Markov logic
networks (46), logic programs with annotated disjunctions (62), ProbLog programs (21; 26), and
LPMLN programs (35). By embedding these formalisms into weighted abductive logic program-
ming and transferring our causal reasoning there, we achieve consistent causal reasoning across
various frameworks in statistical relational artificial intelligence. In particular, for logic programs
with annotated disjunctions (62), we recover the causal reasoning provided by CP-logic (60; 61),
as introduced in Section 2.3.2.

First Research Direction: Applying Lifted Inference for Causal Reasoning

While we introduce weighted abductive logic programming as a formalism capturing interchange-
ability assumptions regarding the elements of a given domain, we have only considered causal
reasoning independently of these interchangeability assumptions. In the field of lifted inference, a
variety of algorithms have been developed that make use of such interchangeability assumptions
to speed up computations of noncausal (conditional) probabilities (11). Therefore, we propose to
investigate lifted inference for causal reasoning in weighted abductive logic programs, i.e., to use
the interchangeability assumption encoded in a non-ground program to speed up computations of
post-interventional and counterfactual probabilities as well.

Second Research Direction: A Theory of Statistical Relational Artificial Intelligence

In Section 3.2, we construct weighted abductive logic programs such that the corresponding causal
reasoning satisfies Bochman’s axiomatization (10) together with the assertion that a causal expla-
nation has to start with previously specified prior knowledge. Inspired by the maximum entropy

126 6. Perspectives for Further Research and Conclusion

principle, we introduce uncertainty based on the parameterization of probability spaces provided
by Berger et al. (8). Finally, we commit to the principle of indifference for propagating proba-
bilities from prior knowledge to the corresponding Aristotelian knowledge. However, so far, our
approach misses a completeness result regarding these choices.

We suggest possibly generalizing weighted abductive logic programming to a formalism encom-
passing any framework modeling the principles that guided the construction of weighted abductive
logic programs. In this way, our aim is to classify all frameworks in statistical relational artifi-
cial intelligence. In particular, we conjecture that all these frameworks should be embedded into
such a general formalism. If one, nevertheless, finds a framework that cannot be embedded into
such a formalism, this would raise the question of which fundamental concept is missing in the
description of statistical relational artificial intelligence. Furthermore, proving that a particular
object is not representable in such a general formalism, one immediately obtains that this object
is not representable within every subframework of this formalism. In this way, our approach aims
to facilitate nonexpressivity results in statistical relational artificial intelligence.

Third Contribution: Probabilistic Boolean Counterfactual Reasoning

From now on, we will adopt the view that weighted abductive logic programming is the most
general formalism for Boolean causal reasoning under uncertainty. Section 3.3 is devoted to coun-
terfactual reasoning within weighted abductive logic programming. Hereby, we explicitly assert
that counterfactual reasoning should consistently generalize conditional probabilities.

In Section 3.4.3, we further assert Reichenbach’s common cause assumption that probabilistic
dependence stems from causal reasoning. It then turns out that the fragment of weighted abductive
logic programming enabling well-defined counterfactual reasoning is exactly given by ProbLog
programs that provide full explanations. Furthermore, our approach to counterfactual reasoning
is consistent with the work of Kiesel et al. (34). Specifically, we find that the counterfactual
reasoning in ProbLog programs providing full explanation is implemented in Kiesel’s WhatIf
solver, extending his aspmc solver by the ability of counterfactual reasoning.

Theorem 4.2.6 proves, under rather mild assumptions, that counterfactual reasoning determines
an acyclic ProbLog program up to syntactic equality. Specifically, we provide a procedure that
reconstructs such a ProbLog program from its answers to all counterfactual queries. We conclude
that ProbLog is a suitable formalism for counterfactual reasoning, as many ProbLog programs are
in one-to-one correspondence with the desired query answers.

Suppose further that we are given a set of data sampled from the distribution of a hidden
acyclic ProbLog program P̃. In causal structure discovery, the aim is to determine another ProbLog
program P that describes this set of observations while providing the corresponding counterfactual
reasoning of the program P̃. According to our result, in many cases, Theorem 4.2.6 implies that
we need to reconstruct the hidden ProbLog program P̃ from the provided data up to syntactic
equality, i.e., we need to ensure P = P̃. Hence, causal structure discovery requires great precision
in the learning process.

First Research Direction: Concepts Based on Counterfactual Reasoning

Our work demonstrates that ProbLog programs offer a convenient way to represent causal mecha-
nisms. Recall that the corresponding counterfactual reasoning is implemented in Kiesel’s WhatIf
solver and that ethical notions such as responsibility, blame, fairness, or harm are essentially for-
mulated in counterfactuals (30; 7; 14). Hence, we suggest using ProbLog for reasoning about these
ethical notions.

In this work, we focus on type causality, that is, statements like “Smoking causes cancer,”
and do not address individual or actual causality, that is, statements like “Uncle Sam died young
because he used to smoke one pack of cigarettes a day.” Note that formalizing actual causality
essentially relies on counterfactual reasoning (30). Therefore, we suggest investigating actual
causality within ProbLog. According to Theorem 4.2.6, in many cases, counterfactual reasoning
uniquely determines our representation for type causality (ProbLog programs) up to syntactic

127

equality. Translating this result into a statement about the relationship between actual and type
causality would be particularly interesting.

Second Research Direction: Counterfactual Reasoning in ProbLog

Recall Theorem 4.2.6, which essentially states that counterfactual reasoning determines an acyclic
ProbLog program up to syntactic equality.

We only require the acyclicity assumption because our proof relies on Clark completion (25).
Therefore, we propose extending our result to cyclic ProbLog programs by replacing Clark com-
pletion (25) in our proof with the more elaborate translation of logic programs provided by Lin
and Zhao (38).

We also emphasize that our proof provides a procedure for recovering a given ProbLog program
from the answers to the corresponding counterfactual queries. This opens the door to deriving
ProbLog programs that generalize counterfactual estimations obtained, for instance, from ran-
domized controlled trials. However, in the current stage, our procedure requires numerous coun-
terfactual estimates to recover a ProbLog program. Hence, further research is needed to reduce
the amount of counterfactual information necessary for this reconstruction process. In particular,
leveraging the interchangeability assumptions encoded in non-ground ProbLog programs may be
a promising starting point.

Finally, suppose that we are provided with a probability for each possible counterfactual query.
In this situation, we suggest further investigating under which assumptions the provided procedure
terminates with a resulting ProbLog program P and under which assumptions the program P
yields the given counterfactual probabilities. This investigation would allow us to explore the
counterfactual expressiveness of ProbLog, enabling the identification of examples where custom
counterfactual conclusions may not be represented using ProbLog programs.

Fourth Contribution: Relation between Counterfactual Reasoning and
Cause-Effect Relationships

In Theorem 5.2.1, we employ the same mild assumptions as in Theorem 4.2.6 to prove that positive
acyclic ProbLog programs are essentially determined up to syntactic equality by the corresponding
distribution and cause-effect relationships. In particular, we provide a procedure that recovers a
positive acyclic ProbLog program from its induced distribution and these cause-effect relationships.

Chapter 5 further demonstrates that this result fails if we allow for negation in the body of
ProbLog clauses. This contrasts with the case of structural equation models, that is, causal models,
which only mention linear equations, which are uniquely determined by the induced distribution
and the corresponding cause-effect relationship (41, Section 5.2.1).

Suppose that we are given a set of observational data sampled from the distribution induced by
a hidden positive acyclic ProbLog program P̃. Furthermore, assume we have a structure learning
algorithm that is able to learn a positive acyclic ProbLog program P with the correct distribution
from the provided data and cause-effect relationships. In this case, this algorithm recovers the
program P̃ up to syntactic equality, i.e., we find P = P̃. In particular, it is feasible to use the
resulting program P for counterfactual reasoning. Lastly, we argue that this observation provides a
setting for the currently available structure learning algorithms in probabilistic logic programming,
allowing them to determine programs supporting counterfactual reasoning.

Research Direction: Applications of Data-Based Counterfactual Reasoning

In Chapter 5, we justify using currently available structure learning algorithms in probabilistic logic
programming to derive programs that support counterfactual reasoning from observational data.
As a next step, we propose applying our theory and considering probabilistic logic programming
for data-based counterfactual reasoning in applications.

128 6. Perspectives for Further Research and Conclusion

Summary of Our Contributions and Proposals for Future Research

This thesis first introduces weighted abductive logic programming as a general formalism tai-
lored to causal reasoning in Section 3.2. This formalism encompasses widespread frameworks
of statistical relational artificial intelligence, facilitating consistent causal reasoning across these
frameworks.

Within weighted abductive logic programming, this thesis then determines ProbLog programs
that provide full explanation as a fragment enabling well-defined counterfactual reasoning in Sec-
tion 3.2. Furthermore, it focuses on acyclic ProbLog programs in Chapters 4 and 5. Chapter 4
proves that counterfactual reasoning essentially determines these programs up to syntactic equal-
ity. Lastly, Chapter 5 shows that positive acyclic ProbLog programs are essentially determined
up to syntactic equality by their induced distribution and cause-effect relationships.

Based on the results of this thesis, we propose the following directions for future research:

• Classifying frameworks in statistical relational artificial intelligence to enable non-expressivity
results

• Developing lifted inference algorithms for causal reasoning

• Reasoning on actual causality, responsibility, blame, fairness, and harm within ProbLog

• Clarifying the relation between actual causality and type causality within ProbLog

• Learning ProbLog programs from counterfactual estimations (randomized controlled trials)

• Characterizing the counterfactual expressiveness of ProbLog

• Conducting data-based counterfactual reasoning in applications

Bibliography

[1] Angioni, L.: Causality and Coextensiveness in Aristotle’s Posterior Analytics 1. 13. In: Oxford
Studies in Ancient Philosophy, Volume 54. Oxford University Press (2018), https://doi.
org/10.1093/oso/9780198825128.003.0005

[2] Aquinas, T.: Summa Contra Gentiles: Book Two: Creation, Translated by Anderson,
J. F. University of Notre Dame Press (1976), https://undpress.nd.edu/9780268016807/
summa-contra-gentiles/

[3] Aristotle: Prior Analytics, Translated by Jenkinson, A. J. In: Complete Works of Aristotle,
Volume 1: The Revised Oxford Translation. Princeton University Press (1984), https://
classics.mit.edu/Aristotle/prior.html

[4] Aristotle: Posterior Analytics, Translated by Barnes, J., pp. 114–166. Princeton University
Press (1985), https://doi.org/doi:10.1515/9781400835843-007

[5] Balke, A., Pearl, J.: Probabilistic evaluation of counterfactual queries. In: Proceedings of
the Twelfth AAAI National Conference on Artificial Intelligence (AAAI 1994). pp. 230–237.
AAAI Press (1994), https://dl.acm.org/doi/10.5555/199288.178004

[6] Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. The-
ory and Practice of Logic Programming (1), 57–144 (2009), https://doi.org/10.1017/

S1471068408003645

[7] Beckers, S., Chockler, H., Halpern, J.Y.: A causal analysis of harm. In: Proceedings of the
36th International Conference on Neural Information Processing Systems. Curran Associates
Inc. (2024)

[8] Berger, A.L., Pietra, V.J.D., Pietra, S.A.D.: A maximum entropy approach to natural lan-
guage processing. Computational Linguistics (1), 39–71 (1996), https://dl.acm.org/doi/
10.5555/234285.234289

[9] Bochman, A.: Explanatory Nonmonotonic Reasoning. World Scientific (2005), https://doi.
org/10.1142/5707

[10] Bochman, A.: A Logical Theory of Causality. The MIT Press (2021), https://doi.org/10.
7551/mitpress/12387.001.0001

[11] Van den Broeck, G., Kersting, K., Natarajan, S., Poole, D.: An Introduction to Lifted Proba-
bilistic Inference. MIT Press (2021), https://doi.org/10.7551/mitpress/10548.001.0001

[12] Bry, F., Eisinger, N., Eiter, T., Furche, T., Gottlob, G., Ley, C., Linse, B., Pichler, R.,
Wei, F.: Foundations of Rule-Based Query Answering, pp. 1–153. Springer Berlin Heidelberg
(2007), https://doi.org/10.1007/978-3-540-74615-7_1

[13] Burnyeat, M.F.: Aristotle on understanding knowledge. In: Explorations in Ancient and
Modern Philosophy. p. 115–144. Cambridge University Press (2012), https://doi.org/10.
1017/CBO9780511974069

https://doi.org/10.1093/oso/9780198825128.003.0005
https://doi.org/10.1093/oso/9780198825128.003.0005
https://undpress.nd.edu/9780268016807/summa-contra-gentiles/
https://undpress.nd.edu/9780268016807/summa-contra-gentiles/
https://classics.mit.edu/Aristotle/prior.html
https://classics.mit.edu/Aristotle/prior.html
https://doi.org/doi:10.1515/9781400835843-007
https://dl.acm.org/doi/10.5555/199288.178004
https://doi.org/10.1017/S1471068408003645
https://doi.org/10.1017/S1471068408003645
https://dl.acm.org/doi/10.5555/234285.234289
https://dl.acm.org/doi/10.5555/234285.234289
https://doi.org/10.1142/5707
https://doi.org/10.1142/5707
https://doi.org/10.7551/mitpress/12387.001.0001
https://doi.org/10.7551/mitpress/12387.001.0001
https://doi.org/10.7551/mitpress/10548.001.0001
https://doi.org/10.1007/978-3-540-74615-7_1
https://doi.org/10.1017/CBO9780511974069
https://doi.org/10.1017/CBO9780511974069

130 BIBLIOGRAPHY

[14] Chockler, H., Halpern, J.Y.: On testing for discrimination using causal models. Proceedings
of the AAAI Conference on Artificial Intelligence (5), 5548–5555 (2022), https://doi.org/
10.1609/aaai.v36i5.20494

[15] Chomicki, J., Saake, G. (eds.): Logics for databases and information systems. Kluwer Aca-
demic Publishers, USA (1998)

[16] Clark, K.L.: Negation as failure. In: Logic and Data Bases. pp. 293–322. Springer US, Boston,
MA (1978), https://dl.acm.org/doi/book/10.5555/578615

[17] Cozman, F.G., Mauá, D.D.: On the semantics and complexity of probabilistic logic programs.
Journal of Artificial Intelligence Research (1), 221–262 (2017), https://dl.acm.org/doi/10.
5555/3207692.3207698

[18] Cozman, F.G., Mauá, D.D.: The structure and complexity of credal semantics. In: Pro-
ceedings of the 3rd International Workshop on Probabilistic Logic Programming (2016),
https://ceur-ws.org/Vol-1661/paper-01.pdf

[19] De Martino, A., De Martino, D.: An introduction to the maximum entropy approach and
its application to inference problems in biology. Heliyon (4) (2018), https://doi.org/10.
1016/j.heliyon.2018.e00596

[20] De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., Janssens, G., Kimmig, A., Landwehr,
N., Mantadelis, T., Meert, W., Rocha, R., Costa, V., Thon, I., Vennekens, J.: Towards di-
gesting the alphabet-soup of statistical relational learning. Tech. rep., Katholieke Universiteit
Leuven (2008), https://lirias.kuleuven.be/retrieve/41397

[21] De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its application
in link discovery. In: Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI 2007). pp. 2462–2467. AAAI Press (2007), https://dl.acm.org/doi/
10.5555/1625275.1625673

[22] Denecker, M., Kakas, A.C.: Abduction in logic programming. In: Computational Logic: Logic
Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part I. pp. 402–436.
Springer (2002), https://doi.org/10.1007/3-540-45628-7_16

[23] Duignan, B.: Occam’s razor. Encyclopedia Britannica (2024), https://www.britannica.
com/topic/Occams-razor

[24] Ebbinghaus, H.D., Flum, J.: Finite model theory. Springer (1995), https://doi.org/10.
1007/3-540-28788-4

[25] Fages, F.: Consistency of Clark’s completion and existence of stable models. Methods of Logic
in Computer Science (1), 51–60 (1994), https://www.researchgate.net/publication/

220492237_Consistency_of_Clark%27s_completion_and_existence_of_stable_models

[26] Fierens, D., van den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon, I., Janssens,
G., De Raedt, L.: Inference and learning in probabilistic logic programs using weighted
boolean formulas. Theory and Practice of Logic Programming (3), 358–401 (2015), https:
//doi.org/10.1017/S1471068414000076

[27] Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings
of International Logic Programming Conference and Symposium. pp. 1070–1080. MIT Press
(1988), http://www.cs.utexas.edu/users/ai-lab?gel88

[28] Getoor, L., Taskar, B.: Introduction to statistical relational learning. The MIT Press (2007),
https://doi.org/10.7551/mitpress/7432.001.0001

https://doi.org/10.1609/aaai.v36i5.20494
https://doi.org/10.1609/aaai.v36i5.20494
https://dl.acm.org/doi/book/10.5555/578615
https://dl.acm.org/doi/10.5555/3207692.3207698
https://dl.acm.org/doi/10.5555/3207692.3207698
https://ceur-ws.org/Vol-1661/paper-01.pdf
https://doi.org/10.1016/j.heliyon.2018.e00596
https://doi.org/10.1016/j.heliyon.2018.e00596
https://lirias.kuleuven.be/retrieve/41397
https://dl.acm.org/doi/10.5555/1625275.1625673
https://dl.acm.org/doi/10.5555/1625275.1625673
https://doi.org/10.1007/3-540-45628-7_16
https://www.britannica.com/topic/Occams-razor
https://www.britannica.com/topic/Occams-razor
https://doi.org/10.1007/3-540-28788-4
https://doi.org/10.1007/3-540-28788-4
https://www.researchgate.net/publication/220492237_Consistency_of_Clark%27s_completion_and_existence_of_stable_models
https://www.researchgate.net/publication/220492237_Consistency_of_Clark%27s_completion_and_existence_of_stable_models
https://doi.org/10.1017/S1471068414000076
https://doi.org/10.1017/S1471068414000076
http://www.cs.utexas.edu/users/ai-lab?gel88
https://doi.org/10.7551/mitpress/7432.001.0001

BIBLIOGRAPHY 131

[29] Goldberger, A.S.: On block-recursive linear regression equations. Brazilian Journal of Prob-
ability and Statistics (1), 46–48 (1992), http://www.jstor.org/stable/43601444

[30] Halpern, J.Y.: Actual Causality. MIT Press (2016), https://doi.org/10.7551/mitpress/
10809.001.0001

[31] Hoeck, N.V.: Cognitive neuroscience of human counterfactual reasoning. Frontiers in Human
Neuroscience (2015), https://doi.org/10.3389/fnhum.2015.00420

[32] Hulswit, M.: Some key moments in the history of the concept of causation. In: From Cause
to Causation: A Peircean Perspective. pp. 1–45. Springer Netherlands, Dordrecht (2002)

[33] Kant, I.: Critique of Pure Reason. Cambridge University Press, Cambridge (1998), https:
//doi.org/10.1017/CBO9780511804649

[34] Kiesel, R., Rückschloß, K., Weitkämper, F.: “What if?” in probabilistic logic programming.
Theory and Practice of Logic Programming (4), 884–899 (2023), https://doi.org/10.1017/
S1471068423000133

[35] Lee, J., Wang, Y.: Weighted rules under the stable model semantics. In: Proceedings of the
Fifteenth International Conference on Principles of Knowledge Representation and Reason-
ing (KR 2016). p. 145–154. AAAI Press (2016), https://dl.acm.org/doi/abs/10.5555/
3032027.3032045

[36] Leibniz, G.W.: First truths. In: Philosophical Papers and Letters. pp. 267–271. Springer
Netherlands (1989), https://doi.org/10.1007/978-94-010-1426-7_31

[37] Lewis, D.K.: Counterfactuals. Blackwell (1973)

[38] Lin, F., Zhao, Y.: Assat: computing answer sets of a logic program by sat solvers. Artificial
Intelligence (1), 115–137 (2004), https://doi.org/10.1016/j.artint.2004.04.004

[39] Malink, M.: Aristotle on circular proof. Phronesis (3), 215–248 (2013), https://doi.org/
10.1163/15685284-12341249

[40] Papantonis, I., Belle, V.: Interventions and counterfactuals in tractable probabilistic mod-
els: Limitations of contemporary transformations. arXiv.org e-Print Archive: Computing
Research Repository (CoRR) (2020), https://doi.org/10.48550/arXiv.2001.10905

[41] Pearl, J.: Causality. Cambridge University Press, 2 edn. (2000), https://doi.org/10.1017/
CBO9780511803161

[42] Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc. (1988)

[43] Poole, D.: Probabilistic horn abduction and Bayesian networks. Artificial Intelligence (1),
81–129 (1993), https://doi.org/10.1016/0004-3702(93)90061-F

[44] Raedt, L.D., Kersting, K., Natarajan, S.: Statistical Relational Artificial Intelligence: Logic,
Probability, and Computation. Morgan & Claypool Publishers (2016), https://dl.acm.org/
doi/10.5555/3027718

[45] Reichenbach, H.: The Direction of Time. Dover Publications (1956)

[46] Richardson, M., Domingos, P.: Markov logic networks. Machine Learning (1–2), 107–136
(2006), https://doi.org/10.1007/s10994-006-5833-1

[47] Riguzzi, F.: Foundations of Probabilistic Logic Programming: Languages, Semantics, Infer-
ence and Learning. River Publishers (2020), https://doi.org/10.1201/9781003338192

http://www.jstor.org/stable/43601444
https://doi.org/10.7551/mitpress/10809.001.0001
https://doi.org/10.7551/mitpress/10809.001.0001
https://doi.org/10.3389/fnhum.2015.00420
https://doi.org/10.1017/CBO9780511804649
https://doi.org/10.1017/CBO9780511804649
https://doi.org/10.1017/S1471068423000133
https://doi.org/10.1017/S1471068423000133
https://dl.acm.org/doi/abs/10.5555/3032027.3032045
https://dl.acm.org/doi/abs/10.5555/3032027.3032045
https://doi.org/10.1007/978-94-010-1426-7_31
https://doi.org/10.1016/j.artint.2004.04.004
https://doi.org/10.1163/15685284-12341249
https://doi.org/10.1163/15685284-12341249
https://doi.org/10.48550/arXiv.2001.10905
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1016/0004-3702(93)90061-F
https://dl.acm.org/doi/10.5555/3027718
https://dl.acm.org/doi/10.5555/3027718
https://doi.org/10.1007/s10994-006-5833-1
https://doi.org/10.1201/9781003338192

132 BIBLIOGRAPHY

[48] Riguzzi, F., Cota, G., Bellodi, E., Zese, R.: Causal inference in cplint. International Journal
of Approximate Reasoning (2017), https://doi.org/10.1016/j.ijar.2017.09.007

[49] Rückschloß, K., Weitkämper, F.: Exploiting the full power of Pearl’s causality in probabilistic
logic programming. In: Proceedings of the International Conference on Logic Programming
2022 Workshops co-located with the 38th International Conference on Logic Programming
(ICLP 2022). CEUR-WS.org (2022), http://ceur-ws.org/Vol-3193/paper1PLP.pdf

[50] Rückschloß, K., Weitkämper, F.: On the subtlety of causal reasoning in probabilistic logic pro-
gramming: A bug report about the causal interpretation of annotated disjunctions. In: Pro-
ceedings of the International Conference on Logic Programming 2023 Workshops co-located
with the 39th International Conference on Logic Programming (ICLP 2023). CEUR-WS.org
(2023), https://ceur-ws.org/Vol-3437/short4PLP.pdf

[51] Rückschloß, K., Weitkämper, F.: What do counterfactuals say about the world? Recon-
structing probabilistic logic programs from answers to “What if?” queries. In: Inductive
Logic Programming, 32nd International Conference (ILP 2023). pp. 93–108. Springer Nature
Switzerland (2023), https://doi.org/10.1007/978-3-031-49299-0_7

[52] Rückschloß, K., Weitkämper, F.: A logic for Boolean causal reasoning un-
der uncertainty or a journey into reinventing probabilistic logic programming,
https://www.plai.ifi.lmu.de/download/weitkaemper-rueckschloss/ecai_weighted_

abductive_logic_programs-3.pdf, manuscript under review

[53] Rückschloß, K., Weitkämper, F.: “Would life be more interesting if I were in AI?” Answering
counterfactuals based on probabilistic inductive logic programming. In: Proceedings of the
39th International Conference on Logic Programming (ICLP 2023). pp. 58–64. Open Pub-
lishing Association (2023), https://dx.doi.org/10.4204/EPTCS.385.7

[54] Sandstad, P.: The formal cause in the posterior analytics. Filozofski Vestnik (3), 7–26 (2016),
https://centaur.reading.ac.uk/100246/

[55] Sato, T.: A statistical learning method for logic programs with distribution semantics. In:
Logic Programming, Proceedings of the Twelfth International Conference on Logic Program-
ming. pp. 715–729. MIT Press (1995)

[56] Shafer, G.: The Art of Causal Conjecture. MIT Press (1996), https://doi.org/10.7551/
mitpress/1403.001.0001

[57] Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal
(3), 379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

[58] Tarski, A.: The concept of truth in formalized languages, translated by Woodger, J. H. In:
Logic, semantics, metamathematics, pp. 152–278. Clarendon Press (1956)

[59] Van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming
language. Journal of the Association for Computing Machinery (4), 733–742 (1976), https:
//doi.org/10.1145/321978.321991

[60] Vennekens, J., Denecker, M., Bruynooghe, M.: CP-logic: A language of causal probabilistic
events and its relation to logic programming. Theory and Practice of Logic Programming (3),
245–308 (2009), https://doi.org/10.1017/S1471068409003767

[61] Vennekens, J., Bruynooghe, M., Denecker, M.: Embracing events in causal modelling: In-
terventions and counterfactuals in CP-logic. In: Logics in Artificial Intelligence, Twelfth Eu-
ropean Conference, (JELIA 2010). pp. 313–325. Springer Berlin Heidelberg (2010), https:
//doi.org/10.1007/978-3-642-15675-5_27

https://doi.org/10.1016/j.ijar.2017.09.007
http://ceur-ws.org/Vol-3193/paper1PLP.pdf
https://ceur-ws.org/Vol-3437/short4PLP.pdf
https://doi.org/10.1007/978-3-031-49299-0_7
https://www.plai.ifi.lmu.de/download/weitkaemper-rueckschloss/ecai_weighted_abductive_logic_programs-3.pdf
https://www.plai.ifi.lmu.de/download/weitkaemper-rueckschloss/ecai_weighted_abductive_logic_programs-3.pdf
https://dx.doi.org/10.4204/EPTCS.385.7
https://centaur.reading.ac.uk/100246/
https://doi.org/10.7551/mitpress/1403.001.0001
https://doi.org/10.7551/mitpress/1403.001.0001
https://doi.org/10.1145/321978.321991
https://doi.org/10.1145/321978.321991
https://doi.org/10.1017/S1471068409003767
https://doi.org/10.1007/978-3-642-15675-5_27
https://doi.org/10.1007/978-3-642-15675-5_27

BIBLIOGRAPHY 133

[62] Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions.
In: Logic Programming, 20th International Conference (ICLP 2004). pp. 431–445. Springer
Berlin Heidelberg (2004), https://doi.org/10.1007/978-3-540-27775-0_30

[63] Williamson, J.: Philosophies of probability. In: Philosophy of Mathematics, pp. 493–533.
North-Holland (2009), https://doi.org/10.1016/B978-0-444-51555-1.50016-X

https://doi.org/10.1007/978-3-540-27775-0_30
https://doi.org/10.1016/B978-0-444-51555-1.50016-X

	Introduction
	Counterfactual Reasoning in Pearl's Causal Models
	Counterfactual Reasoning in ProbLog
	Bochman's Logical Theory of Causality
	Causal Reasoning in Presence of Cyclic Causal Relationships
	ProbLog programs and Counterfactual Reasoning

	Preliminaries
	Knowledge and Counterfactuals
	Statistical Relational Artificial Intelligence
	Probability Theory
	Propositional Logic and LogLinear Models
	Relational First-Order Logic and Markov Logic Networks
	Logic Programs and Probabilistic Logic Programs

	Formalizing Causality, Knowledge, and Counterfactuals
	Pearl's Functional Causal Models
	Causal Queries for Logic Programs with Annotated Disjunctions
	Bochman's Logical Theory of Causality

	Boolean Causal Reasoning under Uncertainty
	Deterministic Causal Reasoning
	Weighted Causal Reasoning
	Counterfactual Reasoning
	The Causal Interpretation of Statistical Relational Artificial Intelligence
	A Causal Interpretation of Markov Logic Networks
	A Causal Interpretation of `3́9`42`"̇613A``45`47`"603ALP`3́9`42`"̇613A``45`47`"603AMLN Programs
	A Causal Interpretation of ProbLog Programs
	A Causal Interpretation of Logic Programs with Annotated Disjunctions

	First Result: A Unifying Framework for Causal Knowledge

	Extracting Causal Knowledge from Counterfactuals
	Knowledge Underdetermined by Counterfactual Reasoning
	Knowledge Uniquely Determined by Counterfactual Reasoning
	Second Result: Equivalence of Knowledge and Counterfactual Reasoning

	Data-Based Counterfactual Reasoning
	Counterfactual Reasoning and Program Induction
	An Assumption for Deriving Causal Knowledge from Observations
	Third Result: A Language Bias for Data-Based Counterfactual Reasoning

	Perspectives for Further Research and Conclusion

