
Poster: Using CodeQL to Detect Malware in npm
Matías Gobbi∗

Bundeswehr University Munich
Research Institute CODE

Munich, Germany

Johannes Kinder
Ludwig-Maximilians-Universität

München (LMU Munich)
Munich, Germany

ABSTRACT
Malicious packages are a problem on npm, but like other malware,
they are rarely completely novel and share large semantic similari-
ties. We propose to leverage the existing static analysis framework
CodeQL to find malware on npm; but instead of detecting vari-
ants of vulnerabilities, we use it to detect variants of malware. We
present a methodology for writing queries from recently reported
packages, as a way of defining semantic signature for specific ma-
licious behavior, where a single one can then be used to match
entire families of malware. An iteration of our approach resulted in
the discovery of 125 malicious packages from the registry, without
producing a single false alarm.

CCS CONCEPTS
• Security and privacy →Malware and its mitigation; • Soft-
ware and its engineering→ Automated static analysis.

KEYWORDS
malware, npm, static analysis
ACM Reference Format:
Matías Gobbi and Johannes Kinder. 2023. Poster: Using CodeQL to Detect
Malware in npm. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’23), November 26–30, 2023,
Copenhagen, Denmark. ACM, New York, NY, USA, 3 pages. https://doi.org/
10.1145/3576915.3624401

1 INTRODUCTION
Malicious actors abuse package repositories to host and distribute
malware, with all parties using these ecosystems becoming possible
targets. Due to the wide adoption of package repositories in soft-
ware development, we need practical solutions to meet this threat
and detect and eliminate malware.

Given its size and popularity, npm tends to be a primary target for
these attacks [12, 22]. In the last few years, there have been excep-
tional cases of highly targeted attacks which employed novel tech-
niques to achieve their objective [8, 10, 17]. But more often, large
numbers of malware are published in waves to registries, where
all samples of such a campaign share similar malicious behavior.
For instance, the crossenv case refers to a collection of almost 40
information-stealing typosquatting packages [16]. Some campaigns
do not necessarily have malicious intent, but still break the terms of
∗Also with Ludwig-Maximilians-Universität München (LMU Munich).

CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications Security (CCS ’23),
November 26–30, 2023, Copenhagen, Denmark, https://doi.org/10.1145/3576915.3624401.

service: bug-bounty packages are attempts by independent security
researchers to exploit dependency confusion vulnerabilities [2].

The security of the registry relies on its community, where npm
triages the malware reported by users before deleting it. Given that
this mechanism is limited, several solutions have been proposed in
the literature, e.g., to reduce the potential attack surface of depen-
dencies [9, 19, 21] or to protect from malicious updates [6, 7, 13];
other approaches function as overall malware detectors [5, 11, 15]
or capture common patterns employed by attackers [14, 18, 20].

In this work, we propose a static analysis approach for the de-
tection of samples similar to recently found malicious packages in
registries. With the use of CodeQL, a security engine designed for
bug finding, we are able to define semantic signatures for current
malware campaigns running in npm. Leveraging removed packages
as templates for writing queries, we focus on having an accurate
method to match specific behavior seen in malware, keeping to
a minimum the amount of potential false alarms. We discovered
and reported 125 malicious packages with the use of our technique,
without wrongly matching a single package along the way.

2 STATIC ANALYSIS WITH CODEQL
CodeQL is a static code analysis engine designed to automatically
check for vulnerabilities in a project by executing queries against a
database generated from the code. By leveraging CodeQL’s taint
tracking capabilities, we are able to capture malicious data flows
between sources and sinks in npm packages, where the analysis re-
turns the list of nodes involved in the detected flows of information.
Furthermore, its integration with IDEs allows a human analyst to
manually review the generated reports with ease.

A CodeQL database contains multiple intermediate representa-
tions of the code, including the abstract syntax tree, the control flow
graph, and the data flow graph [1, 3, 4]. The libraries define classes
to provide a layer of abstraction over the generated relational tables,
resulting in an object-oriented view of the information. CodeQL
queries are written in the logic programming language QL, which
derives its semantics from Datalog [1, 3, 4]. After running a query,
the produced results are styled as alerts in an interpreted format
that points directly to elements from the source code.

In Listing 1 we show a simplified query which uses static taint
analysis to detect specific behavior seen in malware. The package
performed data exfiltration by sending operating-system informa-
tion to a controlled address via a request. We defined a custom taint
tracking configuration (lines 1 to 20) for this attack pattern. We
declare the source node (lines 3 to 12) of the configuration, which
retrieves specific data via the calls to os.hostname(), os.homedir(),
and os.userInfo(). We declare the sink node (14 to 18) of the con-
figuration, that uploads this information to a web server via passing
it as an argument of a POST request, req.write(...). Finally, with
the from.where.select clause (22 to 24), we select all source-sink

https://orcid.org/0009-0003-8823-0029
https://orcid.org/0000-0002-8594-7839
https://doi.org/10.1145/3576915.3624401
https://doi.org/10.1145/3576915.3624401
https://doi.org/10.1145/3576915.3624401

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Matías Gobbi and Johannes Kinder

1 class TTConfiguration extends TaintTracking::Configuration {
2
3 override predicate isSource(Node source) {
4 exists(SourceNode os
5 | os = moduleMember("os", ["hostname"
6 , "homedir"
7 , "userInfo"
8]
9)
10 | os = source.(InvokeNode).getCalleeNode()
11)
12 }
13
14 override predicate isSink(Node sink) {
15 exists(ClientRequest client
16 | sink = client.getAMemberCall("write").getAnArgument()
17)
18 }
19
20 }
21
22 from TTConfiguration cfg, PathNode source , PathNode sink
23 where cfg.hasFlowPath(source , sink)
24 select source , sink

Listing 1: Abbreviated CodeQL query that matches source
code from information stealing malicious package

pairings where there is a flow satisfying the conditions from the
defined configuration.

3 METHODOLOGY
We need to use malware as a template for designing an appropri-
ate query able to capture its semantics, and for this, we take the
removal of a sample from the registry as ground truth. When a
malicious package is detected, npm withdraws it and sets a security
placeholder in its place. Taking advantage of this insight, and know-
ing that the same malware tends to be uploaded multiple times with
slight syntactic changes, we propose an involved methodology to
utilize recently reported samples to find further instances of mali-
cious packages sharing similar behavior. The proposed technique
consists of the following steps:

Step 1. Detecting Removed Packages: The publishing of a
security placeholder in the registry should be a sign of the discovery
of a potentially malicious package. Such events could be recognized
by an automatic monitoring process. This step requires mirroring
the registry to secure a copy of the malware’s source code after its
withdrawal. Note that not every removed package is malicious, and
not every malicious package belongs to a malware campaign.

Step 2. Manual Inspection: An in-depth examination of the
source code helps to understand the malware’s intentions. Which
consists of looking for common patterns seen in malicious pack-
ages [5, 12], such as the spawning of processes, the requests made,
the interactions with the file system, or the runtime generation
and loading of code, while studying the related information flows.
Identifying multiples samples with similar semantics is a clear sign
that a malware campaign might be active in the registry. Lastly,
this step distinguishes attacks patterns that are out of scope for
the analysis, such as those containing executable binaries, which
should be covered with orthogonal methods for malware detection.

Step 3. Query Development: We design a CodeQL query to
specifically match the identified behavior seen in the collected
malware sample. This step relies on the domain knowledge of the

analyst. A query has to be general enough to be able to find ma-
licious packages in the wild and, at the same time, needs to be
accurate enough to avoid producing too many false alarms. The
analyst has to capture the semantics of all the relevant steps of the
data flow in the malware, with the written query. In the case of a
package that encodes sensitive information before stealing it, the
developer has to consider the encoding process as an additional
taint step in the tracking configuration.

Step 4. Query Refinement: The designed CodeQL query has
to match intrinsically malicious behavior. One has to be aware of
coding practices that might be wrongly flagged as malware due
to sharing similar semantics, and purposely avoid capturing them.
During this step, the expertise of the analyst plays an essential role
given that it is necessary to strike a balance between generality
and accuracy without knowing the true distribution in the registry.
Continuing the case of information stealing, and considering there
is no policy regulating user tracking, it is critical for the perfor-
mance of the query to recognize the type of data being exfiltrated,
since not every piece of information is sensible.

Step 5. Application to Registry: Once a query capturing the
behavior of a malicious package was developed, it has to be applied
to the entire registry. For every flagged sample, CodeQL provides
the contextual information detailed in the query together with the
exact position in the code responsible of the match. Leveraging
both, one could review a package to assess its intentions. In case of
being malicious, we report it through the system provided by the
registry maintainers.

4 CASE STUDY
We followed our proposed approach to detect malware in npm. At
the end of May 2022, we downloaded a snapshot of the registry
containing the latest version of more than 1.8 million packages.
One month later, we analyzed and classified all the packages that
were removed for security reasons from npm to construct a dataset
of 75 malware samples.

On Table 1 we show characteristics of each documented mali-
cious cluster. Given the numbers from the dataset, we gathered
samples from at least three different malware campaigns. Almost
all packages trigger their malicious code during installation. We
can summarize the behavior of the samples as follows. Backdoor
creates a code execution backdoor on victim’s machines for further
attacks. Sabotage tampers, abuses, or destroys systems and compu-
tational resources. Virus tries to spread and infect other systems
with malware. Stealing gathers sensitive information from the
victim and sends it back to the attacker. This last one being the
most common attack pattern.

We defined CodeQL queries to specifically match the behavior
seen in each identified cluster, and applied them to our snapshot
of the registry to find malware with similar semantics. On Table 1
we show the results obtained. In total, we found 125 malicious
packages that were available in the registry. When reporting them,
npm determined that almost all violated the open-source terms
declared in the ecosystem, and placed a security placeholder in their
place. The only exception being researcher1772, still available,
which is a deprecated package currently supervised by npm.

Poster: Using CodeQL to Detect Malware in npm CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 1: Taxonomy for the dataset of reported malware (# D),
and results of applying our queries to the registry (# R).

Query Trigger Behavior # D # R

dependency-install Install Virus 1 0
dependency-save Install Virus 48 0
discord-injection Runtime Backdoor 1 0
discord-steal Runtime Stealing 1 0
discord-ware Install Sabotage 1 0
other-request Install Unknown 1 0
other-shell Runtime Unknown 1 0
theft-dns Install Stealing 15 91
theft-encoded Install Stealing 1 0
theft-environment Install Stealing 3 11
theft-os Install Stealing 1 17
theft-ping Install Stealing 1 6
Total 75 125

Analyzing the results, one could see that we found remnants
from four different malware campaigns, all of them having infor-
mation stealing as objective. This might indicate that this attack
pattern tends to be preferred by malicious actors, since the only
configuration needed is a place to store all the harvested informa-
tion, and could lead to future, more elaborate, and highly targeted
attacks. Note that the rest of the queries did not find any other
sample outside of the collected dataset. Meaning that the removed
packages were probably not part of an attack campaign, but one-
off malware packages. Besides this, there was an entire campaign
caught even before collecting the samples for the dataset. Consider-
ing that npm scans the registry in search of malware, it is possible
that the analysis set up by the registry maintainers was able to
detect these packages.

Lastly, a relevant aspect of our results worth mentioning is the
absence of false alarms. This is a consequence of the highly targeted
technique that we propose. Instead of designing a robust tool able to
detect any potentiallymalicious package, we only develop queries to
specifically match the behavior from recently reported malware.We
expect to deal with wrongly matched packages in future iterations
of our approach, yet we are focusing on having high precision
(reducing the time spent manually reviewing results), possibly at
the expense of high recall (potentially missing malicious packages
in the registry).

5 CONCLUSION
We have presented a technique, based on static analysis, to leverage
recently reported malware for detecting further instances with sim-
ilar semantics on npm. By monitoring npm for discovered malicious
packages, we were able to design specific CodeQL queries to match
packages exhibiting the same behavior in the ecosystem. For our
study, we developed and applied 12 queries while scanning the
registry, reporting a total of 125 available malicious packages from
four different malware campaigns, producing no false alarms in the
process. We plan to investigate how the generality of the queries

affects the performance of the proposed approach, and how to deal
with the issue of obfuscation techniques used in npm.

REFERENCES
[1] Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. 2016.

QL: Object-oriented Queries on Relational Data. In 30th European Conf. Object-
Oriented Programming ECOOP. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2:1–2:25.

[2] Alex Birsan. 2021. Dependency Confusion: How I Hacked Into Apple, Mi-
crosoft and Dozens of Other Companies. https://medium.com/@alex.birsan/
dependency-confusion-4a5d60fec610 Accessed: 2023-03-15.

[3] Oege deMoor, Damien Sereni, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgustinov,
Torbjörn Ekman, Neil Ongkingco, and Julian Tibble. 2007. .QL: Object-Oriented
Queries Made Easy. In Generative and Transformational Techniques in Software
Engineering II, Int. Summer School, GTTSE (Lecture Notes in Computer Science,
Vol. 5235). Springer, 78–133.

[4] Oege de Moor, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgustinov, Torbjörn
Ekman, Neil Ongkingco, Damien Sereni, and Julian Tibble. 2007. Keynote Address:
.QL for Source Code Analysis. In Seventh IEEE Int. Workshop on Source Code
Analysis and Manipulation SCAM. IEEE Computer Society, 3–16.

[5] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan Elder, Brendan Saltaformag-
gio, and Wenke Lee. 2021. Towards Measuring Supply Chain Attacks on Package
Managers for Interpreted Languages. In 28th Annu. Network and Distributed
System Security Symposium (NDSS). The Internet Society.

[6] Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian Kästner. 2021. Con-
tainingMalicious Package Updates in npmwith a Lightweight Permission System.
In 43rd Int. Conf. Software Engineering (ICSE). IEEE, 1334–1346.

[7] Kalil AndersonGarrett, Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian
Kästner. 2019. Detecting suspicious package updates. In Proc. 41st Int. Conf.
Software Engineering: New Ideas and Emerging Results (ICSE-NIER). IEEE / ACM,
13–16.

[8] Harry Garrood. 2019. Malicious code in the PureScript npm installer. https:
//harry.garrood.me/blog/malicious-code-in-purescript-npm-installer/ Accessed:
2023-03-15.

[9] Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing the
Attack Surface of Node.js Applications. In 23rd Int. Symp. Research in Attacks,
Intrusions, and Defenses (RAID). USENIX Association, 121–134.

[10] Andrej Mihajlov. 2018. GitHub Issue 39: Virus in eslint-scope? https://github.
com/eslint/eslint-scope/issues/39 Accessed: 2023-03-15.

[11] Marc Ohm, Lukas Kempf, Felix Boes, and Michael Meier. 2020. If You’ve Seen
One, You’ve Seen Them All: Leveraging AST Clustering Using MCL to Mimic
Expertise to Detect Software Supply Chain Attacks. CoRR abs/2011.02235 (2020).

[12] Marc Ohm, Henrik Plate, Arnold Sykosch, andMichael Meier. 2020. Backstabber’s
Knife Collection: A Review of Open Source Software Supply Chain Attacks. In
17th Int. Conf. Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA). Springer, 23–43.

[13] Marc Ohm, Timo Pohl, and Felix Boes. 2023. You Can Run But You Can’t Hide:
Runtime Protection Against Malicious Package Updates For Node.js. CoRR
abs/2305.19760 (2023).

[14] Simone Scalco, Ranindya Paramitha, Duc-Ly Vu, and Fabio Massacci. 2022. On
the Feasibility of Detecting Injections in Malicious Npm Packages. In Proc. 17th
Int. Conf. Availability, Reliability and Security. ACM, 1–8.

[15] Adriana Sejfia andMax Schäfer. 2022. Practical Automated Detection of Malicious
Npm Packages. In 44th Int. Conf. Software Engineering (ICSE). ACM, 1681–1692.

[16] Ceej Silverio. 2017. ’crossenv’ malware on the npm registry. https://blog.npmjs.
org/post/163723642530/crossenv-malware-on-the-npm-registry Accessed: 2023-
03-15.

[17] Ayrton Sparling. 2018. GitHub Issue 116: I don’t know what to say. https:
//github.com/dominictarr/event-stream/issues/116 Accessed: 2023-03-15.

[18] Matthew Taylor, Ruturaj K. Vaidya, Drew Davidson, Lorenzo De Carli, and
Vaibhav Rastogi. 2020. SpellBound: Defending Against Package Typosquatting.
CoRR abs/2003.03471 (2020).

[19] Nikos Vasilakis, Achilles Benetopoulos, Shivam Handa, Alizee Schoen, Jiasi Shen,
and Martin C. Rinard. 2021. Supply-Chain Vulnerability Elimination via Active
Learning and Regeneration. In Proc. ACM SIGSAC Conf. Computer and Communi-
cations Security (CCS). ACM, 1755–1770.

[20] Duc-Ly Vu, Ivan Pashchenko, FabioMassacci, Henrik Plate, and Antonino Sabetta.
2020. Typosquatting and Combosquatting Attacks on the Python Ecosystem. In
IEEE European Symp. Security and Privacy Workshops (EuroS&P). IEEE, 509–514.

[21] Elizabeth Wyss, Alexander Wittman, Drew Davidson, and Lorenzo De Carli. 2022.
Wolf at the Door: Preventing Install-Time Attacks in npm with Latch. In ACM
Asia Conf. Computer and Communications Security (ASIA-CCS). ACM, 1139–1153.

[22] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Small World with High Risks: A Study of Security Threats in the npm
Ecosystem. In Proc. 28th USENIX Security Symposium. USENIX Association, 995–
1010.

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://harry.garrood.me/blog/malicious-code-in-purescript-npm-installer/
https://harry.garrood.me/blog/malicious-code-in-purescript-npm-installer/
https://github.com/eslint/eslint-scope/issues/39
https://github.com/eslint/eslint-scope/issues/39
https://blog.npmjs.org/post/163723642530/crossenv-malware-on-the-npm-registry
https://blog.npmjs.org/post/163723642530/crossenv-malware-on-the-npm-registry
https://github.com/dominictarr/event-stream/issues/116
https://github.com/dominictarr/event-stream/issues/116

	Abstract
	1 Introduction
	2 Static Analysis with CodeQL
	3 Methodology
	4 Case Study
	5 Conclusion
	References

