
Poster: Privacy Risks from Misconfigured Android
Content Providers

Christopher Lenk
Zentrale Stelle für Informationstechnik im

Sicherheitsbereich (ZITiS)
Munich, Germany

Johannes Kinder
Ludwig-Maximilians-Universität

München (LMU Munich)
Munich, Germany

ABSTRACT
Android applications record and process personal user data, and
they can share it among each other through content providers. While
the access is protected through multiple mechanisms, unintentional
misconfigurations can allow an attacker to access or modify private
application data. In this work, we study how content providers
protect private data in a systematic study on 14.4 million Android
apps. We identify potentially vulnerable apps by using static anal-
ysis to successively reduce the set of target apps. Using a custom
attack app, we can confirm data leakage in practice and successfully
access privacy-sensitive information. We conclude that this points
to an inherent problem in designing secure Android applications
and discuss possible mitigations.

CCS CONCEPTS
• Security and privacy → Mobile platform security; Privacy
protections.

KEYWORDS
Android, content provider, data leakage, static analysis, privacy

ACM Reference Format:
Christopher Lenk and Johannes Kinder. 2023. Poster: Privacy Risks from
Misconfigured Android Content Providers. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’23),
November 26–30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3576915.3624389

1 INTRODUCTION
Personal data is generated and processed by mobile applications [4],
and it is stored in system-wide locations and app databases [7]. The
Android operating system implements isolating sandboxes to sepa-
rate components and applications from each other. For interactions
with other apps and components, the construction of an intent or
the call of a content provider is necessary. However, these forms
of inter-app communication also offer an attack surface that has
been known for many years [5, 15], especially if applications do
not adequately secure their endpoints. In 2012, Zhou and Jiang
[15] described content provider leakage, a then widespread issue
in which content providers were generally accessible from other
apps and made data available to them. In November 2012, with the

CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications Security (CCS ’23),
November 26–30, 2023, Copenhagen, Denmark, https://doi.org/10.1145/3576915.3624389.

release of Android 4.2, Google then introduced a modified parame-
ter exported for content provider, which had to be set explicitly
in order to make it available. Despite the reduction in the attack
surface, several approaches of attacks against content providers
were successfully carried out in the following years [9, 11, 13].

In current versions of Android, the parameter exported and
custom permissions are the protective barriers for content providers
and their data. Custom permissions can be defined by the app de-
veloper and must be requested by third party apps to access the
content provider. Whether a permission is allowed at installation
time or at runtime depends on the selected protection level of the
permission. The developer has full control over these processes and
there are only security recommendations in the Android documen-
tation without mandatory specifications. As a result, there is the
possibility that content providers that contain similar data types are
equipped with different protection levels in the app configuration,
which means that data can be accessed without authorization [5, 9].

In this work, we demonstrate that content providers are vul-
nerable to misconfiguration and are often inadequately protected
as a result. Content provider leakage still exists today and can be
exploited. We examined the configurations of 3.4 million Android
applications with content providers and associated custom per-
missions and were able to identify 18,802 app versions that were
equipped with insecure parameters. We selected 179 currently avail-
able targets to assess exploitability and impact on data security and
privacy of the user. We were able to access data with direct personal
reference or that allow conclusions to be drawn about everyday
concerns or preferences. This shows that a rethinking of how per-
sonal data is stored and shared within Android is necessary in order
to protect user privacy.

2 METHODOLOGY
We use the Androzoo dataset [2] as the source for our data and
process all Android packages available at the end of June 2021
to extract application properties from the AndroidManifest.xml.
The data collection includes 14.4 million apps with 23 data fields of
properties like the name and versions as well as the components of
an app like permissions, activities, providers and receivers.

Since we want to search for misconfigurations in the definition
of content providers as shown in Figure 1, we examine the declared
custom permissions and their protection levels for anomalies. We
were able to detect many differences in the configuration of apps,
although their content providers provide similar functions. We can
find, for example, over 700 apps where the permissions of the con-
tent provider have a protection level of zero (normal permission)
and over 500 have a protection level of two (signature-based per-
mission). We focus on applications that implement an exported

https://orcid.org/0009-0003-0877-4852
https://orcid.org/0000-0002-8594-7839
https://doi.org/10.1145/3576915.3624389
https://doi.org/10.1145/3576915.3624389


CCS ’23, November 26–30, 2023, Copenhagen, Denmark Christopher Lenk and Johannes Kinder

Content provider

Data storage

Application sandbox

Other 
applications

enabled
exported

Permission.READ
Permission.WRITE

query()
insert()
update()
delete()

AndroidManifest.xml

content://<provider_authority>/<table_path>

Figure 1: Schematic overview of content providers [6].

content provider and associated permissions with protection level
zero, since these can be accessible from other apps.

Since the dataset also contains apps that are no longer supported
or are of low quality, we use a crawler that collects current infor-
mation from the most widespread market, the Google Play Store,
to focus on applications that are currently distributed and used. We
examined the methods of the content providers of these apps with
static analysis to extract the structure of the app database or the
implemented content URIs (Uniform Resource Identifier).

We test the attack path with a custom Android app. After check-
ing the targeted provider and if the associated permissions have
been granted, we are able to receive the column names via the
content URI and to access the data fields via the provider’s query
function. If permission for write access is also granted, data fields
can be changed and deleted.

3 RESULTS
Overall, we gradually filtered 417 current and available variants
from the 18,802 app versions. After completing the static analysis,
179 applications can be included in the detailed case study. These
have hundreds to millions of downloads and come from various
functional categories of the Google Play Store such as education,
personalization and tools. A Samsung Galaxy S10+ with Android
version 9 was used to carry out the test runs. In our experiments,
we were able to access four different categories of information in
107 cases. As can be seen in Table 1, this includes informational
data, configurations, application content and personal data. Ex-
cerpts from the case studies with download numbers are presented
in §3. In 72 cases, no data could be accessed because there were
functional problems with the app or the provider, the configuration
had changed in the meantime, or the app could not be installed.

Informational data are notifications and messages from the log
system. We were able to read IDs and notification data from an
app that manages home cameras (5M+ installations). A telephony
app (5K+ installations) shares verification data such as hash values
and the content and times of push messages. An alternative app for
SMS and MMS messages (over 1M installations) allows access to
created log entries. This data can be used to draw conclusions about

Table 1: Groups of exploitable data fields.

Data category Objects Count

Informational Push notifications and log contents
like warnings and errors

6

Configuration User settings, preferences and app
parameters

73

Application User input like texts, lists and search
requests

59

Personal Names, communication details, lo-
cations and health data

55

No data No objects accessible due to func-
tional errors, config changes or app
unavailability

72

the behavior of the user and notifications can also have personal
references.

Configuration data includes settings and parameters made by
the user. For launcher apps (with up to 100M+ installations) used
to customize the Android home screen, we were able to get screen
positions and modification times. License information including the
country, device and checksums could also be read out. A banking
app (1M+) shared the user’s login preferences. For other apps (up
to 10M+), data on the status of accounts and application compo-
nents such as widgets was accessible. A note app (500K+) released
the scroll position within a list via a provider. Configuration data
provides a detailed insight into processes and behavior and can be
used by malicious actors to prepare attacks.

In the category of application data, which includes content en-
tered by the user such as texts, calendar entries, task reminders and
search queries, we were able to read out various amounts of data,
starting with individual data objects up to the entire app content.
For a note app (100K+), the title and content were extractable. A
shopping list app (1M+) made all lists available with details on
purchase objects, planned locations and prices. Several applications
like a flight tracker (10M+) share search suggestions and queries, for
example on travel connections. We were able to get added points of
interest with coordinates and descriptions for various map apps (up
to 1K+). A radio app (1M+) allowed access to favorites and informa-
tion on how often they were played. In an application for managing
customer relations (1K+), we can read out data on conversations.
The unprotected release of internal app content and search queries
violates the data security of the applications. An attacker can steal
these directly and exploit them in various harmful ways depending
on the app and the value of its data.

Personal data is the category with the highest security relevance.
In contrast to application data, this is information that has direct
personal reference, such as names, communication details or finan-
cial and health data. A group of government education apps (up to
1M+) allow access to a complete profile of students with names, in-
stitutions, courses and learning status. A network function can also
be used to obtain information on networked participants. Different
variants of a mobile online game (up to 10M+) share login data such
as magic numbers and login tokens with each other, but also with



Poster: Privacy Risks from Misconfigured Android Content Providers CCS ’23, November 26–30, 2023, Copenhagen, Denmark

all other apps due to the configuration. An app for rating and order-
ing food deliveries (1M+) releases names and contact details. With
a weight loss app (100K+), we were able to read out the entered
weight with the associated time stamp. An app for farm manage-
ment (5K+) allows access to detailed information about responsible
persons, the location of the farm and the resident animals. We were
able to identify a transport logistics app (10K+) that releases data
from the linked company account, such as names and roles, via a
provider. With an app for blood sugar measurement (100K+) using
a connected additional device, the glucose value and date could be
accessed without protection.

The results of the experiments show the critical consequences
that an insufficiently configured content provider can have. Access-
ing the data, which can be performed by any other app, violates
the user’s privacy. This circumvents basic security mechanisms
of the Android system and damages the user’s trust in the secure
processing of data. Functions for exchanging data with direct and
indirect personal reference must therefore be protected accordingly.
In the special case that health or financial information needs to be
shared, the highest level of protection is necessary. Due to the value
of personal data, the option of deactivating the provider function
should be considered if this can also be enabled in another way.

4 DISCUSSION
The identified misconfigurations allow malicious actors to access
and modify app-specific data. The case studies prove the effects
of these attacks. Done over a longer period of time, this can allow
for the creation of profiles that include daily concerns, personal
preferences, and appointments, and provide stirrups for potential
attacks and social engineering. Especially in the case of health data,
a leak can have serious consequences such as attempts at extortion,
payment fraud or unauthorized disclosure. But even log entries,
usernames and notifications can also be used to prepare specific
attacks and construct threats.

The issue of misconfiguration points to a general problem in
the concept of the Android system. Although various security im-
provements have been implemented after uncovering attack vec-
tors [5, 15], there is still potential to exploit inter-app communica-
tion. The security of applications and their components is based on
recommendations and not on standardized and mandatory regula-
tions. Due to the flexibility in the definition of parameters, it can
happen that these are set inadequately because the concept has not
been understood or misjudgments occur. Since there are no checks
if a parameter or component has been defined sufficiently secure,
these are implemented without protection against data attacks.

The security of Android’s inter-app communication needs to be
improved from both the developer and system side. The developer
must be made aware of the impact of mistakes in the configuration
of developed apps and the influence of parameters on the Android
system and data. In addition, the concept of protecting content
providers should be improved. One possibility would be the intro-
duction of a component at database level or between the provider
and the data structure, which checks queries based on defined rules
and, if necessary, adjusts or blocks them [1, 3, 12]. At the app level,
it would be possible to check the Android manifest for incorrect
or missing configurations [8, 10], for example with existing tools

like CodeQL. The standardization of provider parameters would
also be conceivable. A specified manifest scheme based on security
recommendations could be used to check and adjust configurations
against a secure model [14].

5 CONCLUSION
We developed a methodology to specifically search for configura-
tion parameters within Android applications that allow access to
sensitive data from content providers and applied it to a dataset
of 14.4 million apps. We were able to carry out a detailed study
with 179 current applications of different categories, which shows
that errors in the configuration of components for data sharing
can expose private user data in practice. In detailed case studies
we proved the successful exploitation of the vulnerability that can
have a significant impact on the privacy and the everyday life of
users of Android devices. While no easy solutions to this problem
are in sight, developers need more assistance to make the right
choices and build secure applications that protect the personal data
of their users.

REFERENCES
[1] Aisha I. Ali-Gombe, Golden G. Richard III, Irfan Ahmed, and Vassil Roussev. 2016.

Don’t Touch that Column: Portable, Fine-Grained Access Control for Android’s
Native Content Providers. In Proc. ACM Conference on Security & Privacy in
Wireless and Mobile Networks (WISEC). ACM, 79–90.

[2] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
AndroZoo: collecting millions of Android apps for the research community. In
Proc. 13th Int. Conf. Mining Software Repositories (MSR). ACM, 468–471.

[3] Sven Bugiel, Stephen Heuser, and Ahmad-Reza Sadeghi. 2013. Flexible and fine-
grained mandatory access control on Android for diverse security and privacy
policies. In USENIX Security Symp. 131–146.

[4] Kai Chih Chang, Razieh Nokhbeh Zaeem, and K. Suzanne Barber. 2020. Is
Your Phone You? How Privacy Policies of Mobile Apps Allow the Use of Your
Personally Identifiable Information. In 2nd IEEE Int. Conf. Trust, Privacy and
Security in Intelligent Systems and Applications (TPS-ISA). IEEE, 256–262.

[5] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David A. Wagner. 2011.
Analyzing inter-application communication in Android. In Proc. 9th Int. Conf.
Mobile Systems, Applications, and Services (MobiSys). ACM, 239–252.

[6] Google. 2023. Content providers | Android Developers. https://developer.android.
com/guide/topics/providers/content-providers Accessed: July 18, 2023.

[7] Google. 2023. Review how your app collects and shares user data | Android Devel-
opers. https://developer.android.com/guide/topics/data/collect-share Accessed:
July 21, 2023.

[8] Zhihui Han, Liang Cheng, Yang Zhang, Shuke Zeng, Yi Deng, and Xiaoshan Sun.
2014. Systematic Analysis and Detection of Misconfiguration Vulnerabilities
in Android Smartphones. In 13th IEEE Int. Conf. Trust, Security and Privacy in
Computing and Communications (TrustCom). IEEE Computer Society, 432–439.

[9] Behnaz Hassanshahi and Roland H. C. Yap. 2017. Android Database Attacks Revis-
ited. In Proc. ACM Asia Conf. Computer and Communications Security (AsiaCCS).
ACM, 625–639.

[10] Ajay Kumar Jha, Sunghee Lee, and Woo Jin Lee. 2017. Developer mistakes in
writing Android manifests: an empirical study of configuration errors. In Proc.
14th Int. Conf. Mining Software Repositories (MSR). IEEE Computer Society, 25–36.

[11] Ryan Johnson, Mohamed Elsabagh, Angelos Stavrou, and Jeff Offutt. 2018. Dazed
Droids: A Longitudinal Study of Android Inter-App Vulnerabilities. In Proc. Asia
Conf. Computer and Communications Security (AsiaCCS). ACM, 777–791.

[12] Simone Mutti, Enrico Bacis, and Stefano Paraboschi. 2015. SeSQLite: Security
enhanced sqlite: Mandatory access control for Android databases. In Proc. 31st
Annu. Computer Security Applications Conf. (ACSAC). 411–420.

[13] Hossain Shahriar and Hisham M. Haddad. 2014. Content Provider Leakage
Vulnerability Detection in Android Applications. In Proc. Int. Conf. Security of
Information and Networks (SIN). ACM, 359.

[14] Yuqing Yang,Mohamed Elsabagh, Chaoshun Zuo, Ryan Johnson, Angelos Stavrou,
and Zhiqiang Lin. 2022. Detecting and Measuring Misconfigured Manifests in
Android Apps. In Proc. ACM SIGSAC Conf. Computer and Communications Security
(CCS). ACM, 3063–3077.

[15] Yajin Zhou and Xuxian Jiang. 2013. Detecting Passive Content Leaks and Pollu-
tion in Android Applications. In Annu. Network and Distributed System Security
Symposium (NDSS). The Internet Society.

https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/guide/topics/data/collect-share

	Abstract
	1 Introduction
	2 Methodology
	3 Results
	4 Discussion
	5 Conclusion
	References

