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ABSTRACT
With more than two million applications, Android market-
places require automatic and scalable methods to efficiently
vet apps for the absence of malicious threats. Recent tech-
niques have successfully relied on the extraction of lightweight
syntactic features suitable for machine learning classification,
but despite their promising results, the very nature of such
features suggest they would unlikely—on their own—be suit-
able for detecting obfuscated Android malware. To address
this challenge, we propose DroidSieve, an Android malware
classifier based on static analysis that is fast, accurate, and
resilient to obfuscation. For a given app, DroidSieve first
decides whether the app is malicious and, if so, classifies it as
belonging to a family of related malware. DroidSieve exploits
obfuscation-invariant features and artifacts introduced by
obfuscation mechanisms used in malware. At the same time,
these purely static features are designed for processing at
scale and can be extracted quickly. For malware detection,
we achieve up to 99.82% accuracy with zero false positives;
for family identification of obfuscated malware, we achieve
99.26% accuracy at a fraction of the computational cost of
state-of-the-art techniques.
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1 Introduction
The Android ecosystem continues to grow, and with close
to two million apps published on marketplaces today, it is
clear that fast and reliable mechanisms are required to detect
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and analyze potentially dangerous apps. The first problem
we look at is malware detection: operators of app markets
wish to automatically check submitted apps for malicious
or potentially harmful code to protect users. The second
problem we are interested in is family identification: an
important step of forensic analysis of malicious apps is to
differentiate families of related or derived malware [35]. For
both detection and family identification, we strongly prefer
light-weight and scalable methods to cope with the numbers
of apps, both benign and malicious.

In general, static analysis techniques are computationally
cheaper than emulation-based dynamic analysis; unfortu-
nately, many static analysis techniques are easily thwarted
by obfuscation, which is becoming increasingly common on
Android [28]. Family identification in particular also suffers
from the widespread code reuse in malware, which leads to
different malware families sharing code and entire modules.

To address these challenges, we introduce DroidSieve, a sys-
tem for malware classification whose features are derived from
a fast and scalable, yet accurate and obfuscation-resilient
static analysis of Android apps. DroidSieve relies on sev-
eral features known to be characteristic of Android malware,
including API calls [1, 38, 5], code structure [35], permis-
sions [40], and the set of invoked components [5]. In addition,
DroidSieve performs a novel deep inspection of the app to
identify discriminating features missed by existing techniques,
including native components, obfuscation artifacts, and fea-
tures that are invariant under obfuscation. In particular, we
make the following contributions to the state of the art:

• We introduce a novel set of features for static detection
of Android malware that includes the use of embedded
assets and native code; it is at the same time robust
and computationally inexpensive. We evaluate its ro-
bustness on a set of over 100K benign and malicious
Android apps. For detection, we achieve up to 99.82%
accuracy with zero false positives. The same features
allow family identification with an accuracy of 99.26%.

• We analyze the relative importance of our features
and demonstrate that artifacts introduced by state-of-
the-art obfuscation mechanisms provide high-quality
features for reliable detection and family identification.
Moreover, we show that there is a small set of features
that perform consistently well regardless of whether
they are derived from obfuscated or plain malware.

The rest of the paper is organized as follows: We first mo-
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tivate our choice of features by briefly reviewing obfuscation
techniques in Android malware (§2). We then describe our
two main classes of features (§3) before presenting our ex-
perimental setup and results (§4). Finally, we review related
work (§6) and conclude (§7).

2 Obfuscation in Android
We now briefly review the state of the art in Android obfus-
cation as it motivates our work. Thorough taxonomies of
software obfuscations are available in the literature [10, 31].

String Obfuscation. Recent approaches to fingerprinting
malware have made use of string-based features such as
permissions and apps/package names [1, 5, 21]. Some strings,
such as the declaration of application permissions, follow a
strict syntax and must appear in the clear; other strings,
such as names and identifiers, can be easily randomized or
encrypted [9, 24].

Native Code. Native code is also frequently used to offload
malicious functionality from the main Dalvik executable
(DEX) to dynamically linked libraries or other executables
(ELF files), which are then invoked at runtime.

Dynamic Code Loading. Native code and additional
Dalvik bytecode can be loaded from a library included in
the app’s assets, from another app (collusion attack) or from
a remote system after being retrieved at runtime. In our
experiments, we found many examples of dynamic code load-
ing, including cases where code was loaded from outside
of the app. However, the mere presence of dynamic code
loading is not malicious in itself, since many regular software
frameworks employ this technique, which makes it even more
attractive to malware writers.

Code Hiding. Malware authors often proactively hide mali-
cious components to make the overall application look benign
to cursory inspection [4]. For instance, the GingerMaster
malware hides Bash scripts for its packaged root exploit un-
der innocuous file names such as install.png and gbfm.png

in its resources [33]. Other malicious apps go a step further
and use a form of steganography, e.g., by hiding malicious
code inside a valid image file [34]. The app loads the im-
age through a seemingly benign action but uses a decoding
algorithm to extract a malicious executable payload1.

Finally, Android malware can also hide its malicious pay-
load in an APK file hosted as a resource of the main app.
When the app is executed, the user is lured into installing
the hidden APK and the system then dynamically loads the
hidden component. In the rest of the paper, we refer to these
apps as incognito apps. In a related scenario, the update
attack, the app just contains a component that downloads
and executes a malicious payload from an external server.
Such attacks are hard to detect and mitigate as the app
misleads the user to grant the additional permissions while
pretending to update itself [26].

The aforementioned methods for code hiding can easily be
combined with encryption to further obfuscate the malicious
payloads and decrypt them only at runtime [4]. While en-
cryption makes it harder to assess the component statically,

1A recent example is Android/TrojanDropper.Agent.EP
(MD5:1f41ba0781d51751971ee705dfa307d2 ), November 2015.
b0n1.blogspot.co.uk/2015/11/android-malware-drops-
banker-from-png.html

its presence can be detected by measuring the entropy of the
component. However, encryption is also commonly employed
by benign apps, and during our experiments, we particularly
found that many benign apps were using encrypted strings.

Reflection. Reflection is a commonly used feature in vari-
ous Java frameworks, but it is also a notorious impediment
to static analysis, since it may be infeasible to statically
determine which code is executed at runtime. As a conse-
quence, malware writers have long discovered reflection for
obfuscating sensitive API calls and libraries [4]. In a recent
large-scale study, Lindorfer et al. [22] showed that the general
use of reflection among apps has increased significantly.
The state of obfuscation on Android has caught up with

that on desktop systems, and there are already automatic
frameworks available for obfuscating Android app compo-
nents [9, 24, 28]. Hence, obfuscation now poses a serious
challenge for static malware analysis on Android and has to
be addressed to achieve robust malware classification.

3 Feature Engineering
We now introduce our proposed set of features for both mal-
ware detection and identification of malware families. Based
on an analysis of existing malware (§3.1), we identify two
major classes: resource-centric features are derived from
resources used by the app (§3.2); syntactic features are de-
rived from the code and metadata of the app (§3.3). A map
relating classes of features is shown in Figure 1. We use both
binary and continuous features. The presence or absence of a
particular trait, such as a permission, is encoded as a binary
feature; numeric properties, such as string lengths or opcode
frequency, are encoded as continuous features.

3.1 Prevalence of Features
Robust classification requires a diverse set of features. Fea-
tures such as API calls are highly relevant for classifying
non-obfuscated malware but are susceptible to obfuscation.
The presence of obfuscations may indicate malware, but it is
not by itself sufficient to form judgment, since benign soft-
ware can also use the same techniques for legitimate purposes.
Therefore, we propose to employ a portfolio of features that
covers both non-obfuscated and obfuscated malware.
As a first step towards selecting effective features, we

measured the prevalence of a wide range of features that
could be effective at identifying both obfuscated and non-
obfuscated Android malware. We hypothesize that features
centered around steganography, where the sample hides its
malicious payload in its assets, or inconsistent nomenclature
of components of an app by a careless malware developer
are important features. To test our hypothesis, we run
an assessment on a collection of over 100,000 benign and
malicious samples from multiple sources. To put our findings
in perspective, we also select some features from published
works on Android malware identification.

For benign samples, we obtained a dataset of clean apps
vetted by McAfee (McGW). For the malicious samples, we re-
lied on two commonly used datasets: the Malgenome Project
(MgMW) [41] and the Drebin dataset [5]. We further ex-
tended our dataset with the goodware (MvGW) and malware
(MvMW) collected by Lindorfer et al. [21]. To measure fea-
ture prevalence in obfuscated malware, we also include the
recent PRAGuard (PgMW) dataset [24]. The samples in
PRAGuard were obtained by obfuscating the samples of the
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Figure 1: Non-exhaustive map of extracted features. The left side shows syntactic features derived from the source code of the
app; the right side shows resource-centric features derived from the assets of the app.

MgMW dataset with techniques such as class and method
renaming, reflection, and class encryption, among others.

Table 1 summarizes the results of our investigation. We
can observe that most of the features are more prevalent in
malware than in goodware. In particular, structural and log-
ical inconsistencies are between 5% and 35% more prevalent
in malware. In fact, the difference in prevalence of these
features is comparable to well-understood features such as
permissions, sensitive API calls, and those related to SMS
messaging. Thus, inconsistencies are an important class of
feature that have not been reported in the literature so far.

Our work also identifies obfuscated malware. In view of
this, we also looked for prevalence of features that may hint
at obfuscation in the form of reflection or the use of native
code. In our study, McGW contained a prevalence higher
than either MvGW and most of the malware datasets. This is
because McGW is a more recent dataset with samples ranging
from 2012 to 2016 and use advanced coding techniques while
other datasets with the exception of PgMW are from 2012
and 2013. One may wonder the utility of including these
features as a part of the classifier if they cannot be used to
classify modern samples. A key assumption that we make
here is that the classification model should evolve over time
as pointed out recently in the literature [12]. Features that
are relevant today will naturally become irrelevant in the
future and it is the responsibility of malware analyst to purge
obsolete features from the model while retraining. For our
experiments, we retain these features as we test our features
over a large timespan.

The PgMW dataset deserve special mention as it high-
lights how standard forms of obfuscation can confound the
classification model. For the PgMW dataset, it can be seen
that some features that are common in malware can be easily
obfuscated. For example, methods that are crucial for the

detection of malicious activities, such as communications
(SMS) or the access to sensitive information (getSimSerial-
Num.), have been nearly eliminated in the obfuscated dataset.
Therefore, relying on these features alone when dealing with
obfuscation is detrimental to malware analysis and detection.
These findings further reinforce our original suggestion of
using a diverse portfolio of features for resilient classification.

3.2 Resource-centric Features
We propose a set of new features extracted from the app’s
resources stored in the APK. An excerpt of the resource-based
features that we use can be seen in Table 1.

The two main guiding criteria that we use for building the
set of resource-based features are structural inconsistencies
and logical inconsistencies. Structural inconsistencies refer to
the artifacts left behind after hiding a malicious component.
Logical inconsistencies refer to the footprints typically left
when repackaging a piece of malware as part of a benign app.

Certificates. We check whether the times at which the app
was signed and at which the certificate was generated are
similar. The intuition behind this feature is that automated
repackaging tools modify existing apps and sign them using
auto-generated ad-hoc certificates before distribution. Thus,
if the date when the certificate was created is close to the
date on which the app was signed, it can reveal the use
of an automated tool for app repackaging. We mark apps
where the time difference was below ten minutes. For each
certificate, we also build features from the timezone and
the common name’s string length, which allows to identify
similar certificates generates by repackaging tools.

Nomenclature. For each of the components in the app,
we verify whether the correct package name is used as a
prefix of the components in a package directory which is



Type Capability
Goodware Malware Summary

McGW MvGW MgMW Drebin PgMW MvMW Goodware Malware

Logical
Inconsistencies

Main Activity 15.01% 8.85% 29.44% 18.71% 29.60% 8.23% 9.31% 13.13%
Service 43.44% 4.60% 72.62% 54.17% 74.29% 35.34% 7.51% 44.18%
Receiver 46.23% 13.57% 74.29% 56.06% 75.87% 36.60% 16.02% 45.66%

Structural
Inconsistencies

APK File Match 1.77% 0.07% 24.21% 6.51% 24.13% 2.23% 0.20% 5.18%
APK File Extension Mismatch 1.41% 0.02% 23.89% 6.28% 24.13% 2.22% 0.12% 5.10%
Image File Extension Mismatch 3.69% 1.48% 19.92% 8.22% 18.17% 1.44% 1.65% 4.82%

Sensitive API
Package: SMS 5.63% 1.92% 20.79% 36.53% 0.00% 57.80% 2.20% 46.82%
TelephonyManager.getSimSerialNum. 9.24% 4.69% 50.63% 24.06% 0.08% 14.22% 5.03% 16.34%

Permissions
READ CONTACTS 22.93% 6.26% 36.27% 23.29% 38.8% 17.20% 7.52% 20.71%
ACCESS FINE LOCATION 28.04% 16.40% 34.29% 30.04% 32.30% 15.53% 17.28% 21.38%

Obfuscation

Dynamic Code 32.22% 0.44% 19.60% 6.98% 0.00% 2.04% 2.83% 3.47%
Reflection 74.08% 39.37% 67.62% 56.04% 99.21% 40.14% 41.97% 49.50%
Native Code 49.61% 3.69% 54.13% 19.51% 0.16% 6.43% 7.14% 10.15%
Native Code without ELF 8.10% 0.58% 1.67% 0.70% 0.00% 0.52% 1.14% 0.54%

Total Number of samples 8,041 99,037 1,260 5,560 1,260 10,581 107,078 17,401
Total Number of families – – 49 179 49 – – –

Table 1: Percentages of apps with given properties in the McAfee Goodware (McGW), Malgenome (MgMW), Drebin malware,
PRAGuard’s obfuscated Malgenome (PgMW), Marvin Goodware (MvGW) and malware (MvMW) dataset. Note that the
summary shows the total number of apps after removing overlapping samples.

the usual practice in most apps. If there is a mismatch, we
treat it as a potential case of tampering with the original
contents of a benign app. Table 1 shows an overview of the
percentage of samples that exhibit such a mismatch. For
each of the package names, we also derive its length and
its Shannon entropy, which help to identify automatically
generated names.

Inconsistent Representations. We check whether the
file extensions match the file contents (as identified by the
file header or a magic number) to allow highlighting apps that
try to hide shell scripts or ELF binaries as images or other
resources. Table 1 shows that such inconsistencies are good
indicators of malicious intent in some (e.g., Malgenome) but
not all (e.g., Marvin) datasets, potentially owing to trends
in malware writing and repackaging tools.

Incognito Apps. In some cases the payload of a malicious
app is in an APK that is disguised among the assets of the
host app. To capture this malicious payload, we recursively
extract both syntactic and resource centric features for any
incognito APK and DEX found within the app. We pigeon-
hole these features under a different category in order to sepa-
rate these statistics from the ones related to the host app. For
instance, permission.INTERNET counts the static number
of accesses to the Internet, while icg.permission.INTERNET
does the same for the incognito app.

Native Code. We also scan the assets of the app to identify
any native ELF files. The files are parsed to extract features
from the header and individual sections of the file. We extract
the number of entries in the program header, the program
header size, and the number and size of the section headers.
From individual sections, we extract the flags of the section
to understand if they are W (writable), A (allocatable),
X (executable), M (mergeable), S (strings), etc. and use
them as Boolean features. Within code sections, we also
look for instructions invoking critical system calls such as
ioctl, which is used for Android’s inter-procedural and inter-
component communication.

3.3 Syntactic Features

We present our syntactic features; several of these, such as
API calls [1] and permissions [40], are already known to
perform well with non-obfuscated malware. We don’t claim
novelty by including these features. Instead, we use them to
build a classifier that is robust against both well-known and
modern malware which tends to be increasingly obfuscated.
To enrich the set of syntactic features, we propose some new
features such as explicit intents and additional ones mined
from the meta-information. These are discussed below. We
reiterate here that a combination of diverse features is crucial
for robust detection of both plain and obfuscated malware.
This is corroborated in Section 4.2 where important features
come from diverse categories, yet they all rank highly in
relation to other features (see Figure 2 and 3).

DEX-based Features. We tag each method based on the
libraries it invokes from the Android Framework (method
tag). These tags represent the class of APIs used by the
method and are encoded as binary features. We also scan the
app for the presence string variables in DEX files containing
keywords we obtained from reverse engineering malware from
the Malgenome data set. For instance, su relates to executing
code with super user privileges; emulator and sdk suggest
that the app checks for the presence of an emulator.

Intents and Permissions. We parse the Manifest to iden-
tify all implicit intents that can be received from other apps.
We also scan the code to identify any explicit intents, which
are used to start services within the same app. The count of
individual intents is used as a continuous feature for classifica-
tion. We break down the set of intents into sub-categories for
further granularity: (i) intents containing the keywords an-
droid.net.*, which are related to the connection manager;
(ii) intents containing com.android.vending.* for billing
transactions; (iii) intents that target framework components
(com.android.*); (iv) all intent actions, beginning with an-

droid.intent.action.*; and (v), a catch-all category for
the reminder intents. Finally, we also extract the set of
permissions declared in the manifest of the app.



Meta-information. Apart from the specific type of permis-
sion used, we also count the number of Android framework
permissions and custom third-party permissions used by the
app. The number of times that a permission is used through-
out the code is encoded as a feature. Similarly, we count the
number of activities, broadcast receivers, content providers,
services, and entry points of the app. Entry points are ways
in which an app can be invoked or executed.

Evasion Techniques. We further look for techniques that
are frequently used to confuse analysis systems, i.e., na-
tive code, cryptographic libraries, or reflection. For ex-
ample, Ldalvik/system/DexClassLoader indicates dynamic
code loading, Ljava/lang/reflect/Method is required for
invoking a method through reflection, and any access to
Ljavax/crypto is a sign for the use of cryptography. For
native code invocations, we count the number of times the
Dalvik opcode 0x100 is present in the bytecode, which corre-
sponds to loading and executing native code.

4 Experiments and Results
We implemented our proposed feature set in DroidSieve, a
system for static detection and family identification of An-
droid malware. We begin our evaluation by describing our
experimental setup and evaluation metrics (§4.1). We then
address the following questions:

• Feature Engineering (§4.2): Which types of features
are most effective for regular and obfuscated malware?

• Classification of Standard Samples (§4.3): How
effective is DroidSieve in classifying non-obfuscated mal-
ware only, and how does it compare to other approaches
that address the same problem?

• Classification of Obfuscated Samples (§4.4): How
effective is DroidSieve in classifying obfuscated malware
or a mix of non-obfuscated and obfuscated malware?

• Computational Efficiency (§4.5): Do the computa-
tional costs of using DroidSieve allow its application at
scale?

4.1 Experimental Setup
We mean to evaluate the choice of our features for two distinct
problems:

Evaluation Categories. We evaluate DroidSieve along two
dimensions, the classification task and the type of dataset.
The classification task is either (1) malware detection among
a set of malicious and benign samples or (2) family identifica-
tion among a set of samples known to be malicious. The type
of dataset is either non-obfuscated, obfuscated, or mixed. We
use the datasets introduced in §3.1 and combinations thereof;
details are shown in Table 2a.

Choice of Learning Algorithm. We implemented both
malware detection and family identification in DroidSieve
using Extra Trees. As alternatives we considered one-vs-all
Support Vector Machines (SVM), Random Forests, and eX-
treme Gradient Boost (XGBoost). In the past, SVM and
Random Forest have been successfully applied to malware
detection [5, 32] and they have been shown to have better
performance than others after comparing them to 180 classi-
fiers on various datasets [15]. Ensemble tree-based classifiers
perform well on many real world settings, however. For ex-
ample, Extra Tree [18] and Gradient Tree Boosting [19] have

been achieving great performance in most of recent “Kag-
gle” competitions [2] on various domains, including malware
classification2 or spam detection3.
We use feature selection to restrict the classifier to im-

portant discriminating features. A feature is selected when
the importance score assigned to the feature by the classi-
fier is higher than the mean of all the features’ scores. For
decision trees, this importance is computed from the mean
decrease impurity (MDI) where a higher score implies a more
important feature.

Evaluation Metrics. For evaluating the classification re-
sults, we use the detection rate (DR), the false positive rate
(FPR), the accuracy (ACC), and the F1-score (F1) which
is the harmonic mean of the precision and recall as quality
metrics. Detection rate is the correct number of predictions
made over the set of malware, whereas accuracy reports
the number of correct predictions made after considering
both goodware and malware. We only use the detection
rate for the case of malware detection and we report this
metric together with the false positive rate, i.e., the number
of goodware samples wrongly classified as malware divided
by the total number of goodware samples in the dataset.

For assessing the performances of the proposed models, we
use hold-out validation to avoid overfitting [14]; samples used
to fit the model are different from the ones used to validate
it. We retained one third of the samples for validation and
trained the model on the remaining two thirds of the data.
For each sample that was retained, we ensured that we trained
on samples from the same category. For malware detection,
a category for a sample indicates whether it is benign or
malicious. For family identification, a category indicates the
name of family. Consequently, we do not have a case of
testing on samples from unseen families or categories; this
would be an instance of zero-shot learning [25], a problem we
consider out of scope for this paper. We did not use any form
of re-sampling, such as cross-validation, to avoid biasing our
results [27].

4.2 Ranking of Features
We now analyze the quality of our features, ranking them
when used on unobfuscated and obfuscated datasets. We
expect features that are easily obfuscated to decrease in
importance, whereas features that are invariant under obfus-
cation should remain stable.
We pass the feature vectors for our samples to the Extra

Tree algorithm and rank them by mean decrease impurity [23].
As decision trees split the dataset by considering one fea-
ture at a time, it is easy to measure how much impurity
is introduced in the classification by choosing a particular
feature. Note that these rankings are informative and do not
dictate our choice of features in all sets of experiments in §4.3
and §4.4. For classification, DroidSieve uses automatic fea-
ture ranking and chooses the top features for the respective
training set.
For malware detection, we passed all samples in McGW

+ MgMW and McGW + PgMW through the Extra Tree
classifier. Figure 2a and Figure 2b depict the top 30 features
for these cases, respectively. In the case of McGW + MgMW,

2http://blog.kaggle.com/2015/05/26/microsoft-malware-
winners-interview-1st-place-no-to-overfitting/
3http://mlwave.com/winning-2-kaggle-in-class-
competitions-on-spam/



ID Dataset Name Ground Truth #samples
— Drebin [5] Malware 5,560
MgMW MalGenome [41] Malware 1,260
PgMW PRAGuard * [24] Malware 1,260
McGW McAfee Goodware 8,041
McMW McAfee Malware 13,289
MvGW Marvin [21] Goodware 99,037
MvMW Marvin [21] Malware 10,581

(a) Dataset sources

Set Detection
Family

Identification
1 {McAfee Goodware, Drebin} Drebin
2 {McAfee Goodware, MalGenome} MalGenome
3 {McAfee Goodware, PRAGuard*} PRAGuard*
4 {Marvin Goodware, Marvin Malware} –
5 {McAfee Goodware, McAfee Malware} –

Hold-out Ratio: 67% Training – 33% Testing

(b) Dataset combinations

Table 2: Overview of chosen datasets for malware detection and family identification. The set of experiments involving
obfuscated samples is marked with an asterisk(*). The holdout ratio shows the percentage of samples retained for validation.
For the case of Marvin and McAfee malware we retain the splitting given by the authors, otherwise we use a random split.

these 30 features account for the top 40% features, while in
the case of McGW + PgMW these features account for the
top 36% features. We repeated a similar experiment for the
case of family identification and the top features for samples
from MgMW and PgMW are presented in Figure 3a and
Figure 3b, respectively. They denote the top 26% and the
top 43% most important features for identifying Android
malware families from MgMW and PgMW, respectively.

For both plain and obfuscated malware, it may be seen
from Figures 2a and 2b that permissions (prepended with
PER) play an important role in the detection process. Permis-
sions are hard to obfuscate as scrambling them would break
the Android programming model. Alongside permissions,
novel syntactic features such as used-permissions (prepended
with used.PER) also rank highly. These features derived
after scanning the code to understand what permissions are
being used and how often.

Apart from syntactic features, there are many resource-
centric features which also rank highly. In particular, features
derived from assets such as ELF files (prepended with elf) as
well as intents, and API calls from incognito apps (prepended
with icg) rank highly when detecting plain malware samples
as shown in Figure 2a.

The high-ranked features for malware detection is similar
for both plain and obfuscated apps. A noticeable difference in
the case of obfuscated malware is that the top-ranked feature
is Stat(cert diff.1). which is derived from the certificate of
the app. It checks whether the time difference between the
date when the certificate was issued and time when the app
was signed is within a day. A temporal proximity means
that the app was signed during a time when the malware
developer piggybacked the app with malicious code. This is
a common practice which signals that the malware developer
may be using automated tools to repackage the app.

The ranking of features for classifying malware into fami-
lies for plain and obfuscated malware is shown in Figures 3a
and 3b, respectively. The high-ranked features in both cases
are similar to those observed in the case of classification ex-
cept for two noticeable differences. Firstly, incognito features
are not as important for classifying malware into families
as they are for malware detection. This is understandable
as incognito apps are a means to achieve a malicious ac-
tion but they do not characterize what malicious action
is carried out or how it is carried out. Secondly, we can
see that features derived from the file type of the assets
(prepended with file) and those related to logical inconsis-
tencies (features such as Stat(PackageMismatchService) and
Stat(PackageMismatchReceiver)) are highly ranked. This

could point to the fact that the app is repackaged using an
attack vector that is specific to a given family.

4.3 Classification Results
In this section we evaluate the effectiveness of DroidSieve
in classifying unobfuscated malware, to allow a comparison
against approaches from the literature. To not put DroidSieve
at a disadvantage, we therefore start with a feature set that
includes all features, including those that are susceptible to
obfuscation.
As datasets, We first evaluate on detection of malware

samples where we use the dataset obtained by combining
malicious samples from the Drebin dataset with the Good-
ware set as shown in Table 2b. Note that we only report
results for the Drebin dataset here because it includes all
MalGenome samples and is both larger and more recent.

Malware Detection. The table shows that in our best
scenario we are able to identify if a given app is malicious or
benign with accuracy of 99.64% for the case of Drebin, and
99.82% for MvGW. The breakdown of the accuracy shows
a detection rate of 99.44% for Drebin, with 0.226% of false
positives. Similarly, the detection rate for MvGW is 98.42%
with only 0.008% of false positives. For the case of Drebin
we obtained slightly higher detection rate with respect to
MvGW. However, the false positive rate is better in the case
of MvGW. In fact, in this case the number of goodware
classified as malware is negligible (2 out of 25493). In most
cases, the performance is improved with feature selection.
It allows to drastically reduce the complexity of the feature
space, e.g., from over 20,000 features to less than 1,000. This
means that we are able to reduce redundant or irrelevant
features and improve the performance of classification.

Family Identification. After detection, DroidSieve is also
able to determine if the given malware belongs to a known
family. Our experiments on the Drebin dataset show that
Extra Trees achieve an accuracy of 97.68% when considering
all 2,564 the features (see Table 2b). Interestingly, keeping
the top 320 most informative features increases the accuracy
to 98.12% while adding features that are not unimportant
can hurt classification accuracy [29].

4.4 Obfuscation Evaluation
We now evaluate the effectiveness of our system against
obfuscated malware and against a mix of obfuscated and
unobfuscated malware, as it would be encountered in an
actual deployment. In particular, we ran three sets of exper-
iments for both malware detection and family identification.
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Figure 2: Ranking of features for malware detection: Figure 2a shows importance of features by considering all features on
MalGenome while Figure 2b shows importance of features for the MalGenome obfuscated (PRAGuard) dataset.
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Figure 3: Ranking of features for family identification.

The three cases are based on scenarios where the training
and/or testing samples are obfuscated. Note that our origi-
nal dataset consists of samples from the Goodware set and
samples from the MalGenome project. For each malware

sample, we obtain the corresponding obfuscated sample from
the PRAGuard project.

Detection of Obfuscated Malware. Our training sets
for malware detection are as follows:



Type Classifier #F ACC(%) F1(%) DR(%) FPR(%)

Malware
Detection

Drebin + McGW
Extra Trees 22,584 99.64 99.64 99.44 0.226

Extra Trees + FS 859 99.57 99.57 99.39 0.302
MvGW + MvMW

Extra Trees 26,396 99.72 99.72 97.58 0.012
Extra Trees + FS 634 99.82 99.81 98.42 0.008

Family
Identification

Drebin (108 families)
Extra Trees 2,564 97.68 97.31 – –

Extra Trees + FS 320 98.12 97.84 – –

Table 3: Results for detection and family classification on unobfuscated malware with and without Feature Selection (FS) for
the Marvin, McAfee and Drebin datasets. #F stands for number of features, ACC for Accuracy, F1 for F1-Score, DR for the
detection rate, and FPR for False Positive Rate. Best scores for each setting are shown in bold. Although feature selection
drastically reduces the number of features, it mostly outperforms the full-feature setting.

1. McGW + MgMW: We train on samples from the
Goodware and MalGenome data sets only to show a
baseline classification without obfuscation.

2. McGW + PgMW: We train on the obfuscated mal-
ware samples from PRAGuard and include the Good-
ware.

3. McGW + MgMW + PgMW: We train on both
the original and obfuscated versions of the malware ob-
tained from MalGenome and PRAGuard, respectively,
together with the Goodware.

We chose our test cases for the trained model to highlight
that the choice of our features performs consistently well
regardless of whether we train on the obfuscated samples
or on the original ones. In the first experiment on detect-
ing malware, we retained 33% of samples from PgMW and
McGW and trained with the rest. With the retained samples,
we obtained accuracies of 100% for the McGW samples (0%
false positives) and 99.02% for the PgMW samples. We re-
peated the experiment with the non-obfuscated set of samples
(MgMW + McGW) and obtained similar accuracy values.

To further validate our features and trained models, we
also tested on malware samples from a dataset that is differ-
ent from the one used for training (i.e., 100% hold-out). First,
we trained on all MgMW + McGW samples, and tested on
PgMW samples. Then, we trained on all PgMW + McGW
samples, and tested on MgMW samples. For these two ex-
periments, our accuracy was 92.38% and 96.11% respectively.
As a final experiment to validate our features for detection,
we also performed a hold-out validation of the 33% of the
dataset on all samples i.e. McGW + MgMW + PgMW and
obtained an accuracy of 99.71%. A summary of our results
for the detection task can be found in Table 4. These results
show that our features are effective at distinguishing benign
and malicious samples, a task made more difficult by many
obfuscation techniques also having valid use cases in benign
software (see Table 1).
To compare our performance with recent approaches, we

use Drebin framework [5] to extract features from MgMW,
McGW and PgMW datasets. We trained on all MgMW +
McGW samples and tested on the obfuscated set of samples
(i.e.: PgMW) using the same classification algorithm (Ran-
dom Forest) used by DroidSieve. The detection rate obtained
with Drebin’s feature engineering is 0%. Note that our frame-
work reported 92.38% on this experiment. We repeated the
same experiment by training over the original set of malware

samples collected by Drebin and testing again on PgMW.
The feature set of Drebin in this setting is of 101,055 features
while ours is of 22,584. After applying feature selection,
Drebin retained 13,602 while we retained 859 informative fea-
tures. For this experiment, the features used by the Drebin
framework reported a detection rate of 11% while our frame-
work reported 100%. Among the most important features
used by Drebin were different strings such as URLs which
are a soft target for obfuscation. Contrarily, our framework
retained several logical inconsistencies (e.g.: PackageMiss-
matchIntentConsts and PackageMissmatchService), other
resource-centric features (e.g.: PackageNameEntropy), ELF
features and other statistical features (such as the number
of third party permissions found).

Identification of Obfuscated Families. We now demon-
strate the effectiveness of our features for identifying the
classes each malware sample belongs to. Our training sets
for the identification of malware families are as follows:

1. MgMW: We train on samples from MalGenome only.

2. PgMW: We train on the obfuscated malware samples
from PRAGuard.

3. MgMW + PgMW: We train on both the original
and obfuscated versions of the malware obtained from
MalGenome and PRAGuard respectively.

By following the same settings as in the previous experi-
ments, for each dataset we retained 33% of the samples from
each family, when that dataset was used for both training and
testing. A summary of our results on family identification
can also be found in Table 4. The accuracy after train-
ing on MgMW samples was 97.79% and the accuracy after
training on PgMW was 99.26%. Additionally, we also ap-
plied 100% hold-out validation between MgMW and PgMW
showing accuracies of 97.94% and 97.86% respectively. It
is worth noting here that training on obfuscated malware
enables our classifier to perform better. On the contrary,
when obfuscated samples are not included in the training
set, the resulting model is not able to prioritize all features
needed to perform higher than 97.79%. Finally, we tested
the trained models on a combination of both obfuscated and
non-obfuscated samples (MgMW + PgMW) and obtained
an overall accuracy of 99.15%.



Malware Detection Family Identification

Test Test
Training McGW MgMW PgMW Training MgMW PgMW

MgMW + McGW 100.00 99.02 92.38 ∗ MgMW 97.79 97.94∗

PgMW + McGW 100.00 96.11∗ 99.02 PgMW 97.86∗ 99.26
MgMW + PgGW + McGW 99.71 MgMW + PgMW 99.15

Table 4: Evaluation of classification on the McAfee Goodware (McGW), Malgenome (MgMW), and PRAGuard (Malgenome
obfuscated–PgMG) dataset with feature filtering and using hold-out validation (∗100% hold-out ratio, otherwise we use the
hold-out ration described in Table 2b).

4.5 Efficiency
A main design point for DroidSieve was to allow computa-
tionally inexpensive feature extraction. Figure 4 shows the
runtime for feature extraction on the Marvin dataset, which
contains more than 100,000 samples. The median lies at
just 2.53 seconds for processing one sample on a single core
(Intel Xeon E5-2697 v3 @ 2.60GHz). The overall time for
feature extraction on the Marvin dataset took less than 8
hours when executed in parallel on 40 cores.
Other approaches that have been proposed and shown

effective for obfuscation-resilient Android malware detection
are based on analyzing information flow [7, 16]. However,
information flow analysis requires running times that are
several orders of magnitude above those seen in DroidSieve’s
feature extraction. In particular, when attempting to process
the 5,560 samples of the Drebin dataset with FlowDroid [6],
we were only able to finish half the dataset within three
days. Hence, we believe DroidSieve to be better suited for
deployment of obfuscation-resilient detection at scale.
For the sake of simplicity, in this section we only report

the runtime for feature extraction, we refer the reader to
[12] additional details on the running times for training and
testing the underlying classification algorithms. As expected,
the time taken to process the test samples is negligible.

5 Limitations
The techniques proposed in this paper use lightweight code
and resource parsing to build features. Our framework is not
built on traditional program analysis techniques such as flow
analysis or proofs of non-interference but on mining patterns
for API invocations in individual apps. Additionally, we
collect lightweight statistics on resources which are derived
using simple heuristics which do not required involved pro-
gram/resource analysis. Consequently, our analysis scales
to a large number of apps without hitting performance bot-
tlenecks such as those observed in flow analysis. Having
said that, our techniques may not be robust against mimicry
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Figure 4: Frequency distribution of running times for feature
extraction, in seconds. Most samples require less than six
seconds to be analyzed.

attacks as the features that we mine can be contrived. For
contemporary mobile malware, though, our features seem
to work well. For more sophisticated attacks, it may be
necessary to explore formal program analysis techniques.

Some of our features are built on the use of cryptography
in the app. For building such features, we used a two-pronged
approach. Firstly, we check the entropy of resources of the
app and secondly, we parse the DEX files to identify any
calls to the Java cryptography libraries. We expect the
conjunction of these features to be indicative of packing and
consequently, obfuscation. However, it is possible that the
app uses its own libraries or a weaker encryption scheme
that produces little observable difference in entropy. In such
cases, we would only be relying on features from the DEX
to identify uses of cryptography thus weakening our feature
engineering.

The performance of the classifier might naturally degrade
over time as malware becomes increasingly sophisticated.
This phenomenon is commonly referred to as concept drift.
Our system does not take into account concept drift and we
do not provide any retraining strategies that would fortify
the system against it. Having said that, dealing with concept
drift is crucial in the face of obfuscation. While concept
drift is well-known problem in machine learning, it is only
recently that approaches have been proposed to provide
retraining guidance for malware detection [12]. Whether
these approaches can be adapted to detect concept drift in
the presence of obfuscated malware remains unknown. In
this paper, we argue that it is the responsibility of analyst
to purge obsolete features from the model while retraining
and incorporate novel features when needed.

There are a number of evasion techniques against machine
learning that can potentially target the learning process and
the models rather than feature extraction phase. These
kind of threats are commonly known as adversarial machine
learning attacks [20]. We can find a number of practical
techniques to evaluate the robustness of classifiers under
attack [8, 17]. Additional experiments would be needed to
make a quantitative evaluation of our system in an adversarial
environment.

6 Related Work
We now give an overview of the most relevant Android mal-
ware detection and classification techniques (see Table 5 for
a summary).

Malware Detection. Several systems perform Android
malware detection, i.e., perform binary classification [1, 5].
DroidAPIMiner [1] is a detection system based on features
generated at API level. Drebin [5] is a lightweight detec-



Year Method
Type

Feature # Malware DR/FP(%) ACC(%) Time(s) Environment
Det Class

2014 Dendroid [35] − ✓ CFG 1,247 − 94 −
2014 DroidAPIMiner [1] ✓ − API,PKG,PAR 3,987 99/2.2 − 15 Core i5,6G RAM
2014 DroidMiner [38] ✓ ✓ CG,API 2,466 95.3/0.4 92 19.8 −
2014 Drebin [5] ✓ − PER,STR,API,INT 5,560 94.0/1.0 − 0.75 Core 2 Duo, 4G RAM
2014 DroidSIFT [39] ✓ ✓ API-F 2,200 98.0/5.15 93 175.8 Xeon, 128G RAM
2014 DroidLegacy [13] ✓ ✓ API 1,052 93.0/3.0 98 − −
2015 AppAudit [37] ✓ − API-F 1,005 99.3/0.61 − 0.6 Core i7, 8G RAM
2015 MudFlow [7] ✓ − API-F 10,552 90.1/18.7 − − −
2015 Marvin [21] ✓ − PER, INT, ST, PN 15,741 98.24/0.0 − − −
2015 RevealDroid [16] ✓ ✓ PER,API,API-F,INT,PKG 9,054 98.2/18.7 93 95.2 8-Core, 64G RAM
2016 DroidScribe [11] − ✓ SYSC, BIND, FILE, NET 5,246 − 94 − −
2016 Madam [30] ✓ − SYSC, API, PER, SMS, USR 2,800 96/0.2 − − −
Ours DroidSieve ✓ ✓ As described in §3 16,141 99.3/0.0 99 2.5 40-Core Xeon, 378G RAM

API: Application Programming Interface, API-F: Information Flow between APIs, INT: Intents, CG: Call Graph, PER: Requested Permissions, CFG:

Control Flow Graph, STR: Embedded strings, PKG: Package information of API, ST: Statistical features, PN: Package names, SYSC: System calls,

BIND: Binder transactions, FILE: Filesystem Transactions, NET: Network Transactions, USR: User Activity, SMS: SMS Monitoring

Table 5: Static analysis techniques on Android malware. Results are reported based on the most representative setting. (Almost
all of the systems have difficulty against reflection as they are mostly based on API). The performance time of different systems
is subjected to specification of computing environments.

tion method that uses static analysis to gather the most
important characteristics of Android applications such as
permissions, API calls, and network addresses declared in
clear text. It uses machine learning (Support Vector Ma-
chines) to detect whether a given sample is malicious or
benign. DroidSIFT [39] builds contextual API dependency
graphs that provide an abstracted view of the possible be-
haviors of malware and employs machine learning and graph
similarity to detect malicious applications. MudFlow [7]
and AppAudit [37], however, leverage the analysis of flows
between APIs to detect malware.

The main weakness of semantics-based static analysis is
that it generally shows poor performance against encryption,
reflection, native code, and other cross-platform code such
as HTML5. These drawbacks motivate dynamic analysis
and hybrid approaches [21, 30]. Marvin [21] shows how the
combination of static and dynamic analysis can improve the
detection rate as well as reducing the number of false positives.
It uses a number of statically extracted features and combines
them with additional dynamically extracted features, overall
more than 490,000. Moreover, it leverages machine learning
to detect malware as well as providing a risk score associated
with a given unknown sample. Madam [30] proposed a host-
based malware detection system that analyzed features at
four levels: kernel, application, user and package. It derived
features such as system calls, sensitive API calls and SMS
through dynamic analysis while complementing these with
statically derived features such as permissions, the app’s
metadata and market information.

Malware Family Classification. In addition to malware
detection systems, a number of methods have been proposed
just for classification [35, 11] and others [38, 39] evaluated
the features used by their detection system for classification.
DroidLegacy [13] is a system using API signature similar-
ity to detect and classify malware. Dendroid [35] proposed
an approach based on text mining to automatically classify
malware samples and analyze families based on the control
flow structures found in them. Similarly, RevealDroid [16]
aims at identifying Android malware families. Their ap-
proach uses information flow analysis and sensitive API flow

tracking built on top of two machine learning classifiers, i.e.,
C4.5 and 1NN. DroidScribe [11] used a purely dynamic ap-
proach to malware classification and classified malware into
families by observing system calls, Android ICC through
the Binder protocol and file/network transactions made by
the app. To classify apps that could not be satisfactorily
stimulated during dynamic analysis, DroidScribe built on a
statistical evaluation framework of the underline machine
learning approach [36] to properly trigger a set-based classifi-
cation scheme that identified the top matching families for a
malware sample, given a desired statistical confidence level.

Discussion. We summarize the most prominent static anal-
ysis approaches for Android malware analysis tailored to ei-
ther detection or classification in Table 5. The column Type

shows whether a system was mainly proposed for detection
or classification. The Feature column shows the extracted
attributes from malware. # Malware is the total number
of malware considered for evaluation. DR/FP refers to the
detection rate and false positive rate of a detection system,
and ACC shows the accuracy of the system when it is applied
for malware family classification. Time shows the average
required time for analysis of every application.
Systems like DroidMiner, DroidAPIMiner and Drebin are
mainly based on APIs, which are inherently vulnerable to
reflection. API-flow based approaches like RevealDroid, Ap-
pAudit, MudFlow, and DroidSIFT are more precise and
consider features related to the semantics of application, but
they are still vulnerable to reflection. Furthermore, flow ex-
traction is expensive unless done in the manner of AppAudit
where efficiency is derived from incomplete flow coverage.

In contrast, our system is robust against obfuscation tech-
niques like reflection and encryption while still being compu-
tationally efficient. Authors in [3] also evaluate their system
against common types of obfuscation. However, we evaluate
our system on a wide variety of datasets and combinations to
avoid unreliable performance measurements. Specifically, we
use more than 100,000 goodware apps and over 17,000 mal-
ware apps, while authors in [3] limit their evaluation to 207
goodware apps and 1,192 malware apps. Additionally, while
past studies focus on a smaller set of behaviors, our method



encompasses a larger set of characteristics and behaviors to
distinguish goodware from malware and to identify Android
malware families more effectively.

Finally, Roy et al. [29] discuss design choices for evaluating
detection systems. Going forward, we plan on taking their
important lessons into account. As of now, the focus in
DroidSieve lies decidedly on comparing our novel feature en-
gineering for potentially obfuscated malware against existing
results in their published settings.

7 Conclusion
In this paper, we have presented a fast, scalable, and accurate
system for Android malware detection and family identifi-
cation based on lightweight static analysis. DroidSieve uses
deep inspection of Android malware to build effective and
robust features suitable for computational learning. This is
key in scenarios where security analysts require intelligent
instruments to automate detection and further analysis of
Android malware.

We have introduced a novel set of characteristics and
showed the importance of systematic feature engineering to
achieve a diversified and large range of features that can
adjust to different malware. Our findings show that static
analysis for Android can succeed even when confronted with
obfuscation techniques such as reflection, encryption and
dynamically-loaded native code. While fundamental changes
in characteristics of malware remain a largely open problem,
we showed that DroidSieve remains resilient against state-of-
the-art obfuscation techniques which can be used to quickly
derive new and syntactically different malware variants.
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