
Detecting Malicious Code by Model Checking

Johannes Kinder, Stefan Katzenbeisser, Christian Schallhart, Helmut Veith

Technische Universität München
Institut für Informatik

D-85748 Garching bei München
{kinder,katzenbe,schallha,veith}@in.tum.de

Abstract. The ease of compiling malicious code from source code in
higher programming languages has increased the volatility of malicious
programs: The first appearance of a new worm in the wild is usually
followed by modified versions in quick succession. As demonstrated by
Christodorescu and Jha, however, classical detection software relies on
static patterns, and is easily outsmarted. In this paper, we present a flexi-
ble method to detect malicious code patterns in executables by model
checking. While model checking was originally developed to verify the
correctness of systems against specifications, we argue that it lends it-
self equally well to the specification of malicious code patterns. To this
end, we introduce the specification language CTPL (Computation Tree
Predicate Logic) which extends the well-known logic CTL, and describe
an efficient model checking algorithm. Our practical experiments demon-
strate that we are able to detect a large number of worm variants with
a single specification.

Key words: Model Checking, Malware Detection.

1 Introduction

Today’s Internet connects a large number of household- and business-owned
personal computers running variants of Microsoft’s Windows operating system.
As recent years have shown, these systems have been an especially attractive
target for malicious individuals developing worms—programs that spread au-
tonomously over networks requiring little or no user interaction, like NetSky
or Sasser. Apart from ‘classic’ Internet worms which exploit vulnerabilities in
network services, the most successful and widespread worms have been e-mail
worms. This class of worms typically relies on users opening attachments to e-
mails out of curiosity. Replicating with this rather primitive method, various
versions of NetSky, MyDoom and Bagle have been dominating the worm hitlists
for over a year.

In contrast to the viruses of the pre-Internet era, creating an e-mail worm
that infects hundreds of thousands of computers nowadays does not require
knowledge of systems or even assembly language programming. For example,
NetSky and MyDoom were written in Visual C++, do not appear to be very
skillfully engineered and contain obvious bugs in some of the versions. This trend

is further intensified by the availability of virus toolkits which allow unskilled
persons to create a new virus with a few mouse clicks.

During the last years it became evident that shortly after a new worm is
released into the wild, several modified versions of the worm appear (either
written by the same author or by individuals who somehow got hold of the
source code). As a result of these developments, we see new worm derivatives
appearing on the Internet almost every day. While these new versions differ only
slightly from the original in terms of functionality, the resulting binary file can be
quite different, depending on the compiler in use and its optimization settings;
this problem worsens if executable packers such as UPX [15] or FSG [8] are used.

Current anti-virus products use rather straightforward (but yet computa-
tionally efficient) detection methods, most notably static signature matching
and, more recently, dynamic analysis [13]. Static signature matching employs
a database containing characteristic binary code sequences of known malware
and matches these sequences against executables. Dynamic analysis executes
the potentially infected programs in a controlled environment (sandbox) and
checks for suspicious program behavior at runtime. These two approaches have
the following two substantial drawbacks:

– Signature matching requires an up-to-date database of characteristic viral
code sequences. In order to keep the false positives rate of the virus detector
low, signatures are chosen so that one signature exactly matches one version
of a virus or worm. In particular, the signature will thus not match against
worm derivatives. This hypothesis was certified by Christodorescu and Jha in
tests with commercially available virus scanners [3]; their tests showed that
even naive modifications of the viral code, such as the insertion of a single
nop instruction, can totally foil the detection process. Typically, modified
worms spread quickly, which leads to a window of vulnerability between the
release of a worm variant and the next update of the signature libraries.
In this time span a novel virus or worm derivative cannot be detected by
conventional anti-virus products. It would thus be highly desirable to have
a virus scanner that reliably detects a virus or worm together with a large
class of its potential derivatives.

– On the other hand, while dynamic analysis promises to solve some of the
problems of static signature matching, it can be foiled by appropriate virus
design. In particular the behavior of an executable is observed only over
a limited timespan, which does not allow predictions of future malicious
actions.

Semantic analysis methods (such as static analysis of executables) provide a
possibility to overcome these two general problems. Consequently, various ap-
proaches for virus detection by formal methods can be found in the literature.

Bergeron et. al. [1] concentrate on the detection of suspicious system call se-
quences. In particular, they reduce the control flow graph of an executable to a
subgraph containing only the nodes representing certain system calls and check
whether the subgraph contains suspicious sequences of system calls. Singh and

Lakhotia [14] describe a system that uses the model checker SPIN to check prop-
erties of the control flow graph of a suspicious executable against a formula in
linear temporal logic (LTL) specifying viral behavior. However, in [12] they ex-
press serious doubt about the feasibility of this method and generally of malicious
code detection by formal analysis. In the paper closest to our work, Christodor-
escu and Jha [2] combat common virus obfuscation techniques by transforming
virus source code into an malicious code automaton in order to handle inserted
dead code and jumps between individual instructions; in addition they use un-
resolved symbols as placeholders for registers. If the language of the malicious
code automaton has a non-empty intersection with the language of an automa-
ton built from the program to be analyzed, then a viral code sequence is present
in the program. In particular, their work is dedicated to cope with obfuscated
malware.

In this paper, we propose a novel method to detect malicious code through
model checking [5, 6]. Model checking has been successfully used in the past for
the verification of both hardware and software. We disassemble a potentially
infected executable and construct its control flow graph, containing nodes for all
instructions that are present in the executable. We specify malicious behavior
by a formula ϕ in a branching-time temporal logic. To this end, we introduce
a new temporal logic CTPL (Computation Tree Predicate Logic) that is as
expressive as CTL but allows a succinct and natural representation of malicious
code patterns, taking register renaming into account. Finally, we introduce an
explicit model checking algorithm for CTPL to verify the absence of malicious
patterns in the code. More precisely, if the control flow graph of a program is
a model for ϕ, then the program contains a malicious subroutine. With our
prototype implementation we were able to detect several variants of the NetSky,
MyDoom and Klez worms with one single CTPL formula.

In Section 2 we describe the specification logic CTPL in detail and give
an example CTPL formula which describes common worm behavior. Section
3 introduces the model checking algorithm for CTPL and describes the model
extraction from a binary file. Finally, we present preliminary results in Section 4.

2 The Specification Logic CTPL

In this section we describe the logic CTPL that we use to specify malicious
behavior. Our logic needs to be able to express statements like “In the code there
exists a mov instruction that loads the constant 937 into some register; later,
the value contained in this register is always pushed onto the stack”. In theory
this can can be done in a temporal logic such as CTL [7]. For an introduction
to temporal logics in the context of verification we refer to [5, 9].

We model the control flow graph of an executable as a Kripke structure, i.e.,
as a labeled finite graph. A Kripke structure M is a triple 〈S,R,L〉, where S is
a set of states, R ⊆ S × S is a total transition relation, and L : S → 2P is a
labeling function that associates a set of propositions (elements of P) to each
state. We say that a proposition p holds in a state s, if p is contained in the label

of s, i.e., p ∈ L(s). A path π = s0, s1, s2, . . . in M is a sequence of states si ∈M

with (si, si+1) ∈ R. For a path π, πi refers to the state at position i, with π0

being the starting state. Πs is the set of all paths in M starting at state s.

CTL formulas allow to specify temporal properties of Kripke structures by
six special temporal operators A,E,X,F,G,U; A and E are path quantifiers
that quantify over paths in a Kripke structure, whereas the others are linear-
time operators that specify properties along a given path π. Aϕ is true in a
state s if for all paths in Πs, ϕ is true; in contrast, Eϕ is true in state s if
there exists a path in Πs where ϕ holds. The other operators express properties
of one specific path π: X p is true on a path π if p holds in state π1, F p is
true if p holds somewhere in the future on π, G p is true if p holds globally
on π, whereas pU q is true if p holds on the path π until q holds. In CTL,
path and linear-time operators can occur only pairwise (i.e., in the combinations
AX,EX,AU,EU,AF,EF,AG,EG). While CTL requires basic knowledge of
logic, it can be quickly learned and has been used successfully in order to specify
properties of hardware and software.

The example at the beginning of this section can be expressed in CTL as a
large formula, containing clauses for all register names:

EF(mov eax,937∧ AF(push eax)) ∨

EF(mov ebx,937∧ AF(push ebx)) ∨

EF(mov ecx,937∧ AF(push ecx)) ∨

. . .

Here the machine instructions are atomic propositions (i.e., elements of P). This
formula essentially expresses that there exists a path in the control flow graph of
the executable that contains a mov instruction, which is followed later (on every
possible computation path) by a corresponding push instruction.

In this notation, formulas that model potentially malicious behavior tend
to be very large. Typically these formulas must be resistant against register
renaming; however, this can only be handled in CTL by explicitly mentioning
each possible register assignment in the formula (as shown in the example above).
In order to keep the size of the formula small, we introduce an extension of CTL—
called CTPL—which is tailored towards the specification of code patterns. While
CTPL is not more expressive than CTL, specialized model-checking algorithms
can efficiently exploit the more concise representation of CTPL formulas.

In CTPL we allow propositions to be predicates of the form p(x1, . . . , xn),
where x1, . . . , xn either represent free variables or constants; each free variable xi
can take on values from a finite set U called universe. In CTPL model checking,
the set of propositions P is the set of all syntactic terms p(c1, . . . , cn), where
c1, . . . , cn are elements of U . In our application, the predicate names represent
assembler instructions in the natural way, e.g., cmp ebx,[bp-4] is represented
as cmp(ebx, [bp-4]). In addition, we introduce quantifiers ∃ and ∀ that allow to
quantify over free variables in a predicate. For example, the above CTL formula

1. M, s |= ψ ⇔ There is a B such that M, s |=B ψ.
2. M, s |=B p(x1, . . . , xn) ⇔ p(B(x1), . . . ,B(xn)) ∈ L(s).
3. M, s |=B ¬ψ ⇔ M, s |=B ψ does not hold.
4. M, s |=B ψ1 ∨ ψ2 ⇔ M, s |=B ψ1 or M, s |=B ψ2.
5. M, s |=B ψ1 ∧ ψ2 ⇔ M, s |=B ψ1 and M, s |=B ψ2.
6. M, s |=B ∀x ψ ⇔ For all a ∈ U , M, s |=B[x7→a] ψ.
7. M, s |=B ∃x ψ ⇔ For some a ∈ U , M, s |=B[x7→a] ψ.
8. M, s |=B EFψ ⇔ There is a path π from s containing a state si ∈ π such

that M, si |=B ψ.
9. M, s |=B EGψ ⇔ There is a path π from s such that M, si |=B ψ for all

states si ∈ π.
10. M, s |=B EXψ ⇔ There is a successor state s1 of s such that M, s1 |=B ψ.
11. M, s |=B E [ψ1Uψ2] ⇔ For a path π = (s0, s1, . . .) where s = s0 there is a k ≥ 0

such that M, si |=B ψ1 for all i < k and M, sj |=B ψ2

for all j ≥ k.
12. M, s |=B AFψ ⇔ Every path π from s contains a state si ∈ π such that

M, si |=B ψ.
13. M, s |=B AGψ ⇔ On every path π from s, there holds M, si |=B ψ in all

states si ∈ π.
14. M, s |=B AXψ ⇔ For all successor states s1 of s, M, s1 |=B ψ.
15. M, s |=B A [ψ1 Uψ2] ⇔ For all paths π = (s0, s1, . . .) where s = s0 there is a

k ≥ 0 such that M, si |=B ψ1 for all i < k and M, sj |=B

ψ2 for all j ≥ k.

Fig. 1. Semantics of the logic CTPL.

could be expressed succinctly in CTPL as

∃rEF(mov(r, 937) ∧ AF(push(r))).

Syntax and Semantics of CTPL. The syntax of CTPL is the same as the syntax
of CTL with the following addition: if ϕ is a CTPL formula with a free variable
x, then both ∀xϕ and ∃xϕ are CTPL formulas. Similar as in the semantics
definition of first order logic, we collect bindings for free variables (i.e., assign-
ments between variable names and values from the universe U) in a set B, called
environment. B[x 7→ a] represents the environment that maps the variable x to a
and every other variable y to B(y). If a formula ϕ is valid in a state s of a Kripke
structure under environment B, we will write M, s |=B ϕ. The detailed definition
of the semantics is given in Figure 1. A formula ϕ is valid in M (written M |= ϕ),
if M, s0 |= ϕ for the initial state s0.

Modeling the behavior of programs in CTPL. As the following examples show,
CTPL allows much flexibility in specifying program behavior:

– Code that sets a register to 0 and pushes this value onto the stack with the
next instruction can be specified as

∃rEF(mov(r, 0) ∧ EX push(r)).

– By replacing EX with EF, we can specify a code sequence where other
instructions can occur between mov and push:

∃rEF(mov(r, 0) ∧ EF push(r)).

Note that this specification also allows the presence of instructions between
mov and push that modify the contents of the register r.

– If we want to disallow any change of the register r with a mov instruction
between the first mov and push, we can formulate this constraint using EU:

∃rEF(mov(r, 0) ∧ E(¬∃t mov(r, t)) U push(r)).

Of course there are other ways to change the contents of register r, but
for simplicity, only mov is forbidden here. A similar construction can always
be used if the contents of a register must be preserved between two non-
consecutive instructions.

If a code fragment calls a function with more than one parameter, multiple
push instructions will be present before a call, pushing the parameters of the
function onto the stack. Each push will in turn be preceded by other instructions
that compute the values of the parameters. CTPL can be used to specify the
behavior of such code fragments even in the presence of arbitrarily scheduled
independent instructions by enforcing the correct computation of the parame-
ter values and the correct stack layout. In particular, we model this behavior
in CTPL by the conjunction of several different subformulas. One subformula
represents the order in which the function parameters are pushed onto the stack,
while the other subformulas enforce the correct computation of the individual
parameter values. In order to tie these subformulas together, we introduce a
special location predicate #loc(L); each node of the Kripke structure is labeled
with a unique number L.

Using this predicate, a specification for a call to a function func that takes
two parameters, where the second parameter is set to zero, can be written as:

∃L∃r1(EF(mov(r1, 0) ∧ EF#loc(L)) ∧

∃r2EF(push(r2) ∧ EF(push(r1) ∧ #loc(L) ∧ EF(call(func))))

)

The first line of the formula expresses that there exists a mov instruction in the
code that clears a register r1; at a later time we find an instruction at location L,
whose form will be specified later. The second line asserts that we can eventually
find a call to function func that is preceded by a push instruction at location L,
which in turn is preceded by another push instruction that pushes the content
of r2 onto the stack (for simplicity, we have omitted subformulas that ensure
integrity of the registers r1 and r2 between the mov and push instructions).

Modeling viral behavior in CTPL. Figure 2 shows a part of the disassembled
infection routine of the worm Klez.h. It exhibits the typical behavior of e-mail

mov edi, [ebp+arg 0]

xor ebx, ebx clear register ebx

push edi
...

lea eax, [ebp+ExFileName] store address of the string buffer in eax
mov [esp+65Ch+var 65C], 104h

push eax push the address of the string buffer
push ebx set first system call argument to NULL
call ds:GetModuleFileNameA call GetModuleFileNameA
lea eax, [ebp+NewFileName] load address of destination file name
push ebx set third argument to zero
push eax push the address of destination name
lea eax, [ebp+ExFileName] fetch address of source name string
push eax push the address as first argument
call ds:CopyFileA call CopyFileA

Fig. 2. Code fragment of the infection routine of Klez.h.

worms: the code determines the name of its own executable using the Win-
dows API call GetModuleFileNameA and then copies this file to a different
location (usually a system directory or a shared folder) with the system call
CopyFileA. The Windows API function GetModuleFileNameA takes three pa-
rameters, namely a module name and the address and size of the destination
string buffer; if the module file name is set to zero (NULL), it returns the name
of the running process. The system call CopyFileA also takes three parameters:
addresses of the strings specifying source and destination files and a Boolean
flag. The code in Figure 2 basically consists of those two system calls and in-
structions that initialize the parameters (the relevant lines of the code fragment
are explained in the figure).

Figure 3 shows a CTPL formula that specifies this typical worm behavior;
the formula matches code that calls GetModuleFileNameA to retrieve its own
filename, and afterwards uses the resulting string as a parameter to the system
call CopyFileA. The formula consists of six subformulas that are tied together
with the location predicate and describe the correct computation of the system
call arguments. Line 3 specifies that a string buffer pointer is stored in a register
r0; line 4 asserts that a register r1 is set to zero (NULL). Using the data integrity
construction described before, both subformulas assure that these register values
are not changed by mov or lea instructions until the arguments are pushed onto
the stack with instructions located at positions L0 and L1. Lines 5-8 specify the
preparation of the stack and the call to GetModuleFileNameA: before invoking
the call instruction (located at Lm), a constant c0 and the contents of the
previously prepared registers r0 and r1 are pushed onto the stack; the latter two
push instructions occur at locations L0 and L1. In addition, we specify (again
with the above mentioned data integrity construction) that the stack remains
intact until the system call is issued (i.e., no other stack operations occur). Lines

1. ∃Lm∃Lc∃vFile(
2. ∃r0∃r1∃L0∃L1∃c0(
3. EF(lea(r0, vFile) ∧ EXE(¬∃t(mov(r0, t) ∨ lea(r0, t)))U#loc(L0))∧
4. EF(mov(r1, 0) ∧ EXE(¬∃t(mov(r1, t) ∨ lea(r1, t)))U#loc(L1))∧
5. EF(push(c0) ∧ EXE(¬∃t(push(t) ∨ pop(t)))
6. U(push(r0) ∧ #loc(L0) ∧ EXE(¬∃t(push(t) ∨ pop(t)))
7. U(push(r1) ∧ #loc(L1) ∧ EXE(¬∃t(push(t) ∨ pop(t)))
8. U(call(GetModuleFileNameA) ∧ #loc(Lm)))))
9.)
10. ∧(∃r0∃L0(
11. EF(lea(r0, vFile) ∧ EXE(¬∃t(mov(r0, t) ∨ lea(r0, t)))U#loc(L0))∧
12. EF(push(r0) ∧ #loc(L0) ∧ EXE(¬∃t(push(t) ∨ pop(t)))
13. U(call(CopyFileA) ∧ #loc(Lc)))
14.))
15. ∧EF(#loc(Lm) ∧ EF#loc(Lc))
16.)

Fig. 3. CTPL formula that matches code creating copies of its own executable.

11-14 specify in a similar manner the preparation of parameters for and the
invocation of the system call CopyFileA, occurring at location Lc. Finally, line
15 asserts that GetModuleFileNameA must be invoked before CopyFileA, i.e.,
the location Lm occurs before Lc. All locations are existentially quantified. It is
possible (in a similar way as described above), to construct formulas in CTPL
that capture the basic functionality of various types of malicious code.

3 Model Checking Executable Files

In order to model check a program, it is necessary to represent it as a Kripke
structure; we do this by extracting its control flow graph. In order to perform fine-
grained specifications, every instruction in the program is represented as a node
in the graph. Every instruction that is not a (conditional or unconditional) jump
is linked to its immediate successor. An unconditional jump (jmp) is linked to the
jump target. Nodes containing conditional jumps, such as jz or jge, are linked to
both their successor and the jump target, i.e., are modeled as nondeterministic
choices in the Kripke structure.

In general, there are two ways to handle procedure calls (call): either one
builds a separate model for each procedure in the executable or one inlines (non-
recursive) subroutines into one single Kripke structure. In our current prototype
we follow the first approach.

Each node in the Kripke structure is labeled by a unique location number L
(stored as predicate #loc(L)) and by the assembler instruction, represented as
predicate instr(param1, . . . , paramn). Here, instr codes the name of the machine
instruction (such as mov, jz or lea) and parami denote its parameters (see Figure
4). These parameters are always constants representing register names, memory

c: cmp ebx,[bp-4]

jz j

dec ebx

jmp c

j: mov eax,[bp+8]

?

?

-

-

?

#loc(0)

jz(j)
#loc(1)

dec(ebx)
#loc(2)

#loc(3)

#loc(4)

cmp(ebx, [bp-4])

mov(eax, [bp+8])

jmp(c)

Fig. 4. Executable code sequence and corresponding Kripke structure.

locations or integer operands of the original instruction. Note that the universe
U of parameters is always finite for a fixed disassembled executable.

Model Checking CTPL. The algorithm to check whether a Kripke structure M
is a model of a CTPL formula ϕ extends the classic explicit model checking
algorithm [4], which uses a form of dynamic programming. In particular, our
algorithm visits the states of the Kripke structure as often as the classical al-
gorithm, but needs to keep track of the variable bindings which might become
exponentially large in the worst case. However, our experiments have demon-
strated that this is not a performance bottleneck in practice.

It can be shown that the model checking problem for CTPL is PSPACE-
complete; the hardness follows by a reduction from QBF, whereas member-
ship can be seen through a variant of the model checking algorithm that uses
backtracking and does not keep track of all possible bindings. The complex-
ity of model checking CTPL formulas is thus comparable to the complexity of
the model checking problem for LTL. However, PSPACE-completeness tells
little about the practical performance. In particular, the construction in the
PSPACE-hardness proof requires an unbounded number of quantifiers (∀, ∃), a
situation that will not happen in practice.

The model checking algorithm traverses the formula ϕ in a bottom-up man-
ner, computing for each state s of the Kripke structure and each subformula
ϕ′ of ϕ, whether ϕ′ holds in s. This information is stored in a labeling relation
L ⊆ (S × F × B) with S, F , and B being the set of states, the set of CTPL
formulas, and the set of bindings, respectively. In particular, a tuple (s, ϕ′,B)
is stored in L, if the subformula ϕ′ holds in state s with respect to the vari-
able binding B. The model checker uses these labels to recursively evaluate more

f = E[ψ1Uψ2]:
1. for all states s
2. if (s, ψ2, C2) ∈ L then L := L ∪ (s, f, C2);
3. while L has changed do

4. for all states s if ∃Cs(s, f, Cs) ∈ L then

5. for all (p, s) ∈ R // for all parents of s
6. if ∃C1(p, ψ1, C1) ∈ L then

7. C0 := Cs ∧ C1;
8. if C0 6≡ ⊥ then

9. if ∃Cp(p, f, Cp) ∈ L then L := L ∪ (p, f, C0 ∨ Cp);
10. else L := L ∪ (p, f, C0);

Fig. 5. Part of the model checking algorithm handling formulas of type E[ψ1Uψ2].

complicated subformulas of ϕ; this procedure is iterated up to the full formula ϕ.
M |= ϕ holds if the initial state s0 of M is finally labeled with ϕ. For efficiency
reasons, the bindings will be represented in the labeling relation as a Boolean
formula C; this formalism allows efficient computation of negated bindings. The
Boolean formula representing B will be denoted by C.

Figure 5 shows a typical part of the model checking algorithm, namely the
labeling algorithm for a subformula starting with EU; the full model checking
algorithm can be found in the appendix. In order to find all states where f =
E[ψ1Uψ2] holds, the algorithm assumes that all states where ψ1 or ψ2 hold
are already labeled with ψ1 or ψ2. If there exists a state that is labeled with
ψ2, E[ψ1Uψ2] holds in this state and we can label it with f (line 2). If such
a state exists, we iteratively search for all predecessor states p of s; if these
states are already labeled with ψ1, then we can label these states also with
f (again because f = E[ψ1Uψ2] surely holds there). The algorithm continues
until the label set does not change any more (lines 4-10). During the process,
the bindings are updated accordingly; in particular the bindings Cs of node s
are propagated to all parental nodes (line 7). It can be shown that this process
terminates and labels all states where E[ψ1Uψ2] is valid. In a similar manner,
all other subformula types can be treated (see appendix).

4 Results and Future Work

We have implemented a prototype of the CTPL model checker in Java; the
program takes an assembler file and a CTPL specification as input. In order to
model check an executable, we first disassemble the executable file with Datares-
cue’s IDAPro [10]. However, most e-mail worms use executable packers—tools
that compress an executable and prepend an extraction routine that will decom-
press the binary into system memory every time the resulting executable is run.
This makes it necessary as a first step to uncompress the executable in order to
obtain its original code. Currently this process is done manually, but it can be
automated. The complete toolchain of our prototype is depicted in Figure 6.

- - -

source

assembler

AnalysisDisassemblyUnpacking

CTPL model
IDA Pro

...

Petite Enlarger

unFSG

binary plain binary

checker

Fig. 6. Toolchain of our prototype.

We have tested our prototype on a set of worms dating from the years 2002–
2004, provided by Ikarus Software [11]. Even though there are quite large differ-
ences in the compiled binary code between the different versions of one worm,
our CTPL specification matched most of the worm derivatives. During our ex-
periments, we even found that carefully written CTPL specifications can apply
to several families of worms. Using a slightly more general CTPL formula than
the one shown in Figure 3, we were able to prove the malicious behavior of
Klez.a, Klez.e, Klez.g, Klez.h, NetSky.b, NetSky.c, NetSky.d, NetSky.e, NetSky.p,
MyDoom.a, MyDoom.i, MyDoom.m, and MyDoom.aa with this single formula.

With the current prototype, checking a procedure of 150 lines of assembler
code takes about 2 seconds on an Athlon XP 2600+ CPU with 512MB of RAM.
The prototype implementation of the model checker is not optimized with re-
spect to computation time. We can speed up this model checking algorithm
significantly, e.g., by using sophisticated data structures (like Ordered Binary
Decision Diagrams) for representing the binding sets. Moreover, simple and fast
preprocessing of the assembler input files can eliminate procedures which obvi-
ously do not match the specification.

As future work, we see several promising approaches to improve expressive
power, performance and usability of our prototype. By replacing the x86 instruc-
tion predicates with abstracted forms that capture their operational semantics
we can decrease the complexity of CTPL formulas. For example, clearing a reg-
ister can be abstracted to assign(r, 0), regardless of its concrete implementation
(e.g., as xor eax,eax or mov eax,0). Using such abstractions, more accurate
data integrity constructions of the form E(¬∃tassign(r, t))Uψ can be specified.
In addition, as there are several typical construction patterns in specifications,
we will provide a macro language that allows the user to write malicious code
specifications in a more abstract notation. We also plan to investigate how the
performance of the model checking algorithm can be improved by the use of
efficient data structures.

5 Conclusions

In this paper, we proposed a novel approach to detect malicious patterns in
executable code sequences by model checking. In particular, the behavior of a

malicious code sequence is modeled as a formula in a branching time temporal
logic called CTPL; this formula is matched against the control flow graph of
an executable program by a model checker. CTPL allows for a succinct but yet
natural way to specify the behavior of a code fragment.

Using this approach, we were able to write CTPL specifications that capture
common mechanisms present in viruses and worms. In particular, we were able to
use one CTPL formula to classify several worms together with their derivatives
as malicious. The practical results obtained show that CTPL model checking is
a promising approach for systematically and reliably detecting computer worms
together with functionally similar (but syntactically obfuscated) derivatives.

Acknowledgements. We thank Ikarus Software and Christopher Krügel for their
kind support of this project.

References

1. J. Bergeron, M. Debbabi, J. Desharnais, M.M. Erhioui, Y.Lavoie, and N. Tawbi.
Static detection of malicious code in executable programs. In Symposium on Re-
quirements Engineering for Information Security, March 2001.

2. M. Christodorescu and S. Jha. Static analysis of executables to detect malicious
patterns. In Proceedings of the 12th USENIX Security Symposium (Security’03),
pages 169–186. USENIX Association, August 2003.

3. M. Christodorescu and S. Jha. Testing malware detectors. In Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA’04), 2004.

4. E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Logics of Programs, volume 131 of Lecture Notes
in Computer Science, pages 52–71. Springer, 1981.

5. E. Clarke, O. Grumberg, and D. Long. Model Checking. MIT Press, 1999.
6. E. Clarke and B. Schlingloff. Handbook of Automated Reasoning, chapter Model

Checking, pages 1637–1790. Elsevier, 2001.
7. E. Emerson. Handbook of Theoretical Computer Science, volume B, chapter Tem-

poral and Modal Logic, pages 995–1072. Elsevier, 1990.
8. Fast Small Good. http://www.xtreeme.prv.pl/. (Last accessed: 16 Dec. 2004).
9. M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about

Systems. Cambridge University Press, Cambridge, England, 2000.
10. IDA Pro. http://www.datarescue.com/idabase/. (Last accessed: 20 Jan. 2004).
11. IKARUS Software. http://www.ikarus-software.at/. (Last accessed: 20 Jan.

2004).
12. A. Lakhotia and P. Singh. Challenges in getting ’formal’ with viruses. Virus

Bulletin, September 2003.
13. Norman ASA. Norman sandbox whitepaper. Technical report, 2003.
14. P. Singh and A. Lakhotia. Static verification of worm and virus behavior in binary

executables using model checking. In 4th IEEE Information Assurance Workshop,
June 2003.

15. Ultimate Packer for eXecutables. http://upx.sourceforge.net/. (Last accessed:
16 Dec. 2004).

Appendix: Model Checker for CTPL

In the appendix, we present our model checking algorithm for CTPL formulas;
all temporal operators of CTPL can be reduced to EU, EX, and AF using stan-
dard formula rewrite rules [9]. Thus we only have to treat these three temporal
operators. Moreover, we rewrite ∀xψ as ¬∃x¬ψ.

Input: a Kripke structure M and a closed CTPL formula F
Output: set of states in M which satisfy F

The constraint sets are always kept in DNF, such that:
atom : (variable [= | 6=] constant)
B : {atom1 ∧ . . . ∧ atomn}
C : {B1 ∨ . . . ∨ Bm}

for all subformulas f of formula F in ascending order of size
case f of

⊥:
label no states;

p(x1, . . . , xn):
stateIteration: for all states s

if ∃c1, . . . , cn (s, p(c1, . . . , cn),>) ∈ L then

B := >;
for i := 1 to n

if xi is a variable then B := B ∧ (xi = ci);
else if xi 6= ci then continue stateIteration;

if B 6≡ ⊥ then L := L ∪ (s, f,B);
∃x (ψ):

for all states s
if ∃C(s, ψ, C) ∈ L then

C0 := ⊥;
for all B ∈ C

B0 := >;
for all (v [= | 6=] c) ∈ B

if v 6= x then B0 := B0 ∧ (v [= | 6=] c) ;
C0 := C0 ∨ B0;

L := L ∪ (s, f, C0);
¬ψ :

for all states s
if ∃C(s, ψ, C) ∈ L then

if ¬C 6≡ ⊥ then L := L ∪ (s, f,¬C);
else L := L ∪ (s, ψ,>);

ψ1 ∧ ψ2:
for all states s

if ∃C1(s, ψ1, C1) ∈ L and ∃C2(s, ψ2, C2) ∈ L then

if C1 ∧ C2 6≡ ⊥ then L := L ∪ (s, f, C1 ∧ C2);

ψ1 ∨ ψ2:
for all states s

if ∃C1(s, ψ1, C1) ∈ L then C0 := C1 else C0 := ⊥;
if ∃C2(s, ψ2, C2) ∈ L then C0 := C0 ∨ C2;
if C0 6≡ ⊥ then L := L ∪ (s, f, C0);

E[ψ1Uψ2]:
for all states s

if ∃C2(s, ψ2, C2) ∈ L then L := L ∪ (s, f, C2);
while L has changed do

for all states s if ∃Cs(s, f, Cs) ∈ L then

for all (p, s) ∈ R // for all parents of s
if ∃C1(p, ψ1, C1) ∈ L then

C0 := Cs ∧ C1;
if C0 6≡ ⊥ then

if ∃Cp(p, f, Cp) ∈ L then L := L ∪ (p, f, C0 ∨ Cp);
else L := L ∪ (p, f, C0);

EXψ:
for all states s

if ∃Cs(s, ψ, Cs) ∈ L then for all (p, s) ∈ R

if ∃Cp(p, f, Cp) ∈ L then L := L ∪ (p, f, Cs ∨ Cp);
else L := L ∪ (p, f, Cs);

AF ψ:
for all states s

if ∃Cψ(s, ψ, Cψ) ∈ L then L := L ∪ (s, f, Cψ);
while L has changed do

stateIteration: for all states s
C0 := >;
for all (s, c) ∈ R // for all children of s

if ∃Cc(c, f, Cc) ∈ L then C0 := C0 ∧ Cc;
else continue stateIteration;
if C0 ≡ ⊥ then continue stateIteration;

L := L ∪ (s, f, C0);

end for

output all states s with (s, F, C) ∈ L for some C.

