
Which Instructions Matter the Most:
A Saliency Analysis of Binary Function Embedding Models

Moritz Dannehl∗†, Samuel Valenzuela∗†‡, and Johannes Kinder∗†
∗Ludwig-Maximilians-Universität München, Munich, Germany

†Munich Center for Machine Learning, Munich, Germany
‡Center for Digital Technology and Management, Munich, Germany

{moritz.dannehl,samuel.valenzuela,johannes.kinder}@lmu.de

Abstract—Current deep learning models for binary code strug-
gle with explainability, since it is often unclear which factors
are important for a given output. In this paper, we apply
occlusion-based saliency analysis as an explainability method
to binary code embedding models. We conduct experiments on
two state-of-the-art Transformer-based models that take pre-
processed assembly code as input and calculate embedding
vectors for each function. We show that, during training, the
models learn the importance of different instructions. From
the results, we observe that call instructions and the names
of external call targets are important. This observation con-
firms the intuition that function calls significantly impact the
semantics of a function and therefore should also have a large
impact on its learned embedding. This motivates the need for
developing model architectures that integrate stronger analysis
into preprocessing to further leverage call relationships.

Index Terms—reverse engineering, deep learning, explainability

1. Introduction

The last years have seen a rapid rise in the adoption
of deep learning for tasks related to binary reverse engi-
neering [1, 2, 3, 4, 5, 6]. Just like deep models for text
and images extract high level meaning from data with a
human-like or superior performance, models for binary code
should eventually be able to identify high-level structure and
meaning similar to how a human reverse engineer would.

Still, many open questions remain before we can hope
to achieve comparable performance on binary code as we
have on text and images. Currently, it is unclear how exactly
binary code should be presented to the model for learning,
and what kind of preprocessing should be applied to the
data. Almost all published approaches rely on disassem-
blers to decode raw machine instructions into opcodes and
operands, a deterministic and clearly defined task. But there
is a broad range of options for turning opcodes, registers,
addresses and constants into a limited number of tokens,
and for integrating results of further static analysis.

Facts obtained from static program analysis have been
successfully integrated into the training of machine learning

models [5, 7, 8]. For instance, CLAP [5] implements tech-
niques to focus the model on specific instructions, in this
case intraprocedural control flow. While overall performance
appears promising, it ultimately remained unclear whether
this focus specifically has the expected impact. Just like with
deep learning in general, the model mostly operates as a
black box, with no clear indicators for its reasoning. This
general issue gives rise to the interest in interpretable models
or explainability methods for deep learning.

Intuitively, we expect abstract knowledge about program
semantics to be reflected in a sufficiently sophisticated
model for binary code. For example, it is easy to convince
oneself that the behavior of a function strongly depends on
which other functions it calls. In particular, the behavior of
a function 𝑓 that does nothing but call two functions 𝑔 and
ℎ depends entirely on the behavior of those two functions.
Indeed, at the language level, the semantics of 𝑓 and 𝑔; ℎ
would be identical, a fact that is used for the common
compiler optimization of inlining. As a result, we expect
call instructions to have a comparatively large impact on
function semantics at the binary level.

In this paper, we explore to which degree the learned
models align with intuitive notions of semantic importance
by measuring the impact of different instructions on the
resulting model output. We base our analyses on explain-
ability techniques that have been used in various other
fields including computer vision [9, 10] and natural language
processing [11]. We directly take inspiration from Bastings
and Filippova [12] by masking individual parts of an input to
a given model and measuring the cosine similarity between
the original and masked input.

Our evaluation relies on CLAP [5] and JTRANS [2],
as they both (i) employ a Transformer architecture, (ii)
make pretrained models available, and (iii) were trained
on the BinaryCorp dataset. Both models use raw assem-
bly code as input, which, after tokenization, is fed into a
Transformer that uses token and position embeddings. Both
models implement specific measures to take control flow
into account: in JTRANS, each pair of instructions connected
by a jump shares the corresponding source token embedding
and the target position embedding. CLAP adds instruction
embeddings that represent which tokens belong to the same
instruction and also share weights with the source jump

Published in Deep Learning Security and Privacy Workshop (DLSP 2025), San Francisco, CA, USA, May 15, 2025

token embedding. Using CLAP and JTRANS as the targets
of our explainability experiments, we make the following
contributions:

• We raise awareness for explainability methods for
Transformer-based binary function embedding mod-
els. We adapt occlusion-based saliency methods
from the NLP community to the domain of assembly
code (§2).

• We show that, during training, models learn to dis-
criminate between instructions (§3.2).

• We observe that call instructions are among the
most important instructions in a function (§3.1).

2. Methodology

We now introduce our concrete methodology for analyz-
ing the importance of instructions. We measure occlusion-
based saliency [12] to determine the impact of an instruction
within a given function. In contrast to earlier work by Xu
et al. [13], we mask the instruction rather than removing it.
This avoids generating atypical model inputs that may fall
out of distribution. For instance, removing a call instruction
from the sequence of instructions entirely can result in a
function that pushes function parameters onto the stack,
followed by immediately cleaning the stack again, for no
reason. In contrast, CLAP and JTRANS are pre-trained with
masked language modeling (MLM), among other tasks, so
both models are already familiar with parts of a function
being masked. Each function is represented as a sequence
of instructions. For each instruction, the tokenizer splits the
instruction string output by the disassembler into tokens. In
order to mask an instruction, we mask all of its tokens.

CLAP and JTRANS are well suited for our experiments,
as they have models and preprocessing scripts available,
and are among the currently best-performing Transformer-
based models. For sake of comparison, we also use untrained
models, i.e., with freshly initialized weights. We use the
BinaryCorp-3M dataset as it is also used by the authors
of CLAP and JTRANS and perform our investigations on
the test split. We deduplicate the dataset by keeping only
functions with a unique opcode hash. The opcode hash
avoids false negatives from differing address layouts or
register allocations across function binaries.

For every unique function 𝑓 in the dataset, we measure
the saliency for every instruction 𝑖 by calculating the cosine
distance of the embedding vector of the original, unchanged
function M(𝑓) and the function with the given instruction
masked M(𝑓mask(𝑖)):

𝑠(𝑖) = cos
(
M(𝑓),M(𝑓mask(𝑖))

)
Lastly, we rank the instructions in a function by their

saliency and calculate the saliency quantile. The reason for
this is that the raw saliency values are co-dependent on
the length of a function: the more instructions a function
consists of, the higher the cosine similarity when masking
a single instruction, i.e., the lower the impact of a single
instruction. Table 1 displays an example function and the

TABLE 1. EXAMPLE FUNCTION

Instruction Tokens Saliency Rank Sal. Quant.

1 endbr64 1 0.998 6 0.83
2 sub rsp, 8 3 0.998 5 0.67
3 mov rdi, cs:qword 243E0 8 0.965 3 0.33
4 call cs:free ptr 6 0.498 1 0.00
5 mov cs:qword 243E0, 0 8 0.932 2 0.17
6 add rsp, 8 3 0.998 7 1.00
7 retn 1 0.982 4 0.50

saliency of its seven instructions. The most salient instruc-
tion always has rank 1 and hence the lowest saliency quantile
of 0; the second most salient instruction in this case has a
saliency quantile of 0.17 (1

6), and so on, until the least salient
instruction at rank 7 and quantile 1.

Given the saliency quantile of each instruction, we also
consider the number of tokens each instruction consists of,
as a different proportion of the function will be masked
depending on the instruction length. Therefore, we plot
the saliency quantile dependent on the number of tokens,
consequently being able to compare instruction saliencies
while keeping the number of tokens fixed. Note that for
CLAP models, the maximum number of tokens is 20. Thus,
all instructions consisting of more than 20 tokens during
tokenization will be truncated. Instructions that are encoded
with that many tokens usually have their memory operands
replaced by IDA Pro with the resolved string or function
name that the operand points to. JTRANS simply replaces
any names and addresses with “xxx” and uses no more than
four tokens.

We measure the difference in average saliency quantile
for each instruction 𝑖 to the overall average, and compute
𝑡 = (𝑥 − 𝜇𝑖)/𝑠, where 𝑥 represents the overall average
saliency quantile, 𝜇𝑖 is the average saliency quantile of
instruction 𝑖, and 𝑠 is the standard deviation of the overall
saliency quantile. For all values, we also compute whether
the difference is statistically significant using a one-sample
Student’s t-test.

3. Results

We collect our results in Table 2 for CLAP, Table 3 for
an untrained CLAP model, and Table 4 for JTRANS, both
trained and untrained. Values left blank are not significantly
different, i.e. 𝑝 > 0.01, or have a sample size less than 100.
We group instructions for simplification purposes, including
mapping all opcodes matching the regex j* to jmp, com-
bining conditional and unconditional jumps.

We report the 𝑡 values normalized to standard deviation
of all instructions, with negative values highlighted in red,
indicating that the given instruction is more important than
the average of all instructions with the same number of
tokens. For the sake of clarity, we restrict the table to rather
common instructions. Our implementation and complete
results are available online.1

1. https://github.com/lmu-plai/bfesaliency

2

https://github.com/lmu-plai/bfesaliency

TABLE 2. SALIENCY DIFFERENCES FOR CLAP

Instr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

add 0.2 −0.5 0.2 0.1 0.1 −0.4 −0.4 −0.4 −0.3 0.2
and −0.5 −0.7 −0.8 −0.5 −0.7 −0.9
call −1.4 −0.9 −0.8 −0.1 −0.2 −0.9 −0.5 −0.8 −0.3 −1.3 −0.8 0.0 −0.3 0.2 0.4 0.4 0.1
cmp 0.0 −0.8 −0.2 −0.2 0.1 0.4 −0.2 −0.2 −0.2 −0.2 0.3 0.2 0.6 0.6 0.8
dec −0.8
div −1.7 −0.7
endbr64 0.4 −0.8
imul −0.7 −0.9 −1.1 −0.8 −0.2 −0.7 −0.6 −1.0
inc −0.8 0.8 −0.2 0.3
jmp −0.9 −0.1 −0.5 −0.4 −0.4 −1.1 −0.7 −0.4 −0.4 −1.1 −0.7 −0.7 −0.3 −0.4 −0.3 −0.3
lea −0.9 −0.1 0.1 0.0 −0.6 −0.2 0.1 −0.4 −0.3 −0.6 −0.5 −0.7 −0.6 −0.2 −0.8 −0.5 −0.4
leave 0.7
lock −0.5 0.1 0.3
mov 0.0 0.1 0.2 0.3 0.0 0.3 0.1 0.3 0.2 0.2 0.5 0.6 0.8 0.2 0.2 −0.3 −0.1 0.3
mul −1.1
neg −1.3
nop 0.4 1.4 1.0 1.2
not −1.0
or −0.1 0.3 0.8 −0.5 0.3 1.0 0.9 0.5
pop 0.7
push 0.4 0.4 0.7 0.4 0.9 1.1 1.0 1.4 1.2 1.3 −0.7
retn −0.7
sub 0.4 −0.6 −0.7 0.4 0.2 −0.3 −0.3
test 0.1 −0.3 −0.6 −0.5 −0.7 0.2
ud2 −0.7
xor 0.5 0.2 0.3 0.6 −0.7 −0.4

TABLE 3. SALIENCY DIFFERENCES FOR CLAP UNTRAINED

Instr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

add 0.0 −0.2 0.0 −0.3 −0.3 −0.1 −0.2 −0.6
and 0.0 −0.2 −0.7 −0.4 −0.2
call 0.2 −0.8 −0.1 0.0 −0.1 −0.1 −0.1 0.0 −0.5 −0.1 −0.1 0.0 −0.2 0.2 0.2 0.1
cmp 0.0 −0.8 −0.5 −0.6 −0.4 −0.3 −0.2 −0.3 −0.3 −0.5 −0.1 −0.3 0.7
dec −0.2
div
endbr64 0.1
imul 0.3 0.1 −0.2 −0.3 −0.6
inc 0.2 −0.2 −0.5
jmp 0.2 0.1 −0.5 −0.6 −0.6 −0.8 −0.6 −0.6 −0.1 −0.4 −0.2 −0.1
lea 0.7 0.1 −0.1 −0.1 −0.1 −0.2 0.1 −0.1 −0.1 −0.1 −0.2 −0.5 −0.3 −0.3
leave −0.6
lock −0.1 −0.3 −0.1
mov 0.3 0.1 0.1 −0.1 0.1 0.1 0.0 0.1 0.0 0.3 0.1 0.1 0.1 0.5 0.5 0.1 0.4 0.1
mul
neg 0.1
nop 0.0 0.0 −0.3 −0.1
not
or −0.1 −0.3 −0.4 −0.4 −0.6 −0.6
pop −0.4
push 0.1 −0.8 −1.4 −0.5 −0.1 0.8 1.0
retn 0.0
sub −0.1 −0.4 −0.4 −0.5 −0.3 −0.2 −0.4
test −0.8 −0.6 −0.3 −0.5
ud2
xor −0.8 −0.4 −0.3

3

TABLE 4. SALIENCY DIFFERENCES FOR JTRANS MODELS

JTRANS JTRANS untrained
Instr. 1 2 3 4 1 2 3 4

add 0.3 −0.4
and 0.2 −0.3
call −0.4 0.3
cmp 0.2 −0.6
dec −0.2 −0.7
div −0.8 −0.5
endbr64 −0.5 0.2
imul −0.3 0.0 −0.3 −0.5 −0.3 −0.2
inc 0.1 −0.1
jmp −0.1 −0.2
lea −0.2 −0.6
leave 0.5 −0.2
lock −0.2 0.4 −1.0 −0.9
mov 0.0 0.4
mul −0.6 −0.4
neg −0.2 0.0
nop 0.2 0.5 −0.6 −0.1
not −0.2 −0.2
or 0.0 −0.4
pop 1.1 −0.1
push 0.4 −0.1
retn 0.4 −0.1
sub 0.2 −0.4
test 0.0 −1.2
ud2 −0.5 0.1
xor −0.1 −1.3

3.1. The Importance of call Instructions

Observation: call instructions have a significant im-
pact on function embeddings.

In both the CLAP (see Table 2) and JTRANS model (see
Table 4), call instructions are significantly more important
for the function embedding than the average instruction with
the same number of tokens masked. Note that in our dataset,
80% of the functions had at least one call instruction.

Additionally, we observe that call instructions with
exceptionally many tokens do not seem to be important
for CLAP. These instructions correspond to cases where,
during preprocessing, IDA Pro resolved very long library
function names automatically. Such long names are usually
due to mangled C++ library function names which are not
tokenized in a meaningful way.

3.2. The Effect of Training

For both CLAP and JTRANS, we compare the averages
of saliency quantiles over the number of tokens between the
pretrained model and an untrained model.

Consider Figures 1 and 2, where the straight line rep-
resents the median, and the shaded area spans the first and
third quartile, respectively. We can see that the untrained
model has a strong dependency on the number of tokens
that are masked, while the variance over the masked in-
struction is lower than in the pretrained model. This shows
that the model has learned to distinguish between different
instructions.

1 4 7 10 13 16 19

0

0.2

0.4

0.6

0.8

1

Number of tokens

Sa
lie

nc
y

qu
an

til
e

CLAP

CLAP untrained

Figure 1. Saliency quantiles over number of tokens for CLAP and CLAP
untrained models. Straight line denotes median, shaded area is the first and
third quartile, respectively. A lower saliency quantile corresponds to higher
importance.

1 2 3 4

0

0.2

0.4

0.6

0.8

1

Number of tokens

Sa
lie

nc
y

qu
an

til
e

JTRANS

JTRANS untrained

Figure 2. Saliency quantile over number of tokens for JTRANS models.
Straight line denotes median, shaded area is the first and third quartile,
respectively.

We also identify a correlation between the model’s abil-
ity to judge the semantic impact of an instruction and its
performance. We have reevaluated both CLAP and JTRANS,
each pretrained and untrained, on the binary code similarity
detection task using the BinaryCorp-3M test dataset, see
Table 5. As expected, the pretrained variants clearly out-
perform the untrained models. Note that the performance of
the untrained models is still far superior to random guessing,
indicating that just the model architecture, including prepro-
cessing, contributes significantly to the overall performance.

Observation: CLAP has learned that endbr64 and nop
have no impact on the function semantics.

In the untrained CLAP model, endbr64 and nop have 𝑡-

4

1 4 7 10 13 16 19

0

0.2

0.4

0.6

0.8

1

Number of tokens

Sa
lie

nc
y

qu
an

til
e

CLAP

unknown call
call

Figure 3. Saliency quantile over number of tokens for CLAP model,
additionally displaying call instructions with unknown targets, and third
party library call targets.

values of 0.1 and 0.0, respectively. In the pretrained CLAP
model, both values increase to 0.4, thus indicating the lower
impact on the function embedding after training.

In the pretrained CLAP model, jmp and call instruc-
tions with two tokens have a 𝑡 value of −1.4 and −0.9,
respectively, while the untrained model yields 𝑡 values of
0.2 for both instructions, showing that CLAP has learned
to pay special attention to these instructions. We observe
the same effect for call in JTRANS (−0.4 versus 0.3), but
conversely not for jmp (−0.1 versus −0.2).

3.3. Call Targets

Observation: call instructions with known targets
have a particularly strong impact on function embeddings.

During preprocessing for CLAP, IDA Pro replaces ad-
dresses in calls to third-party library functions with their
respective function names. In order to assess the importance
of the callee function name for the call instruction, we
split the call instructions in Figure 3 into two groups: The
first, unknown targets, consists of all call instructions for
which IDA Pro could not resolve the address to a function
name. The second, known targets, contains all instructions
for which a name could be resolved.

The vast majority of call instructions with an unknown
target consist of four to six tokens and follow the pattern
call (reg)? (qword|sub) [0-9A-F]* where reg can be
any register, and thus are direct or indirect calls to a local
function. We observe a saliency quantile that is close to the
average of all instructions, while call instructions with a
known target, i.e., resolved function name, are significantly
more important. Call instructions with known targets but
only two tokens surprisingly appear to have low importance,
but are an outlier in the dataset at only 162 samples. Most
resolved calls are decorated by IDA Pro using leading under-
scores or segment registers, depending on the exact linking

TABLE 5. PERFORMANCE METRICS

CLAP CLAP untr. JTRANS JTRANS untr.

Recall@1 0.76 0.18 0.55 0.24
Recall@5 0.85 0.26 0.77 0.32

mechanism, which results in more than two tokens. For
instance, in the dataset, memcpy appears only twice as call
memcpy, but 651 times as call memcpy and 4625 times
as cs:memcpy ptr. These differences are not resolved in
preprocessing and are passed on to the tokenizer.

Longer call instructions with eight or more tokens that
have an unknown target are indirect calls, such as call
qword ptr [r12+1358h]. Interestingly, instructions with
nine tokens have a very low saliency quantile. They differ
from instructions with fewer tokens in that they have a high
offset of more than two hex-digits in their memory operand,
which is relatively rare. We suspect that CLAP may have put
emphasis on those instructions due to their scarcity.

It is important to note that CLAP and JTRANS follow
different preprocessing strategies. While most of the infor-
mation obtained via IDA is retained in the input to CLAP,
information such as library function names are replaced with
placeholder text in the case of JTRANS. This means that not
only instructions such as mov rax, 1 are preprocessed as
mov rax, CONST, but also instructions that CLAP recognizes
as call cs:strncmp ptr are converted to call cs:xxx
during JTRANS’s preprocessing. Our results suggest that this
difference in preprocessing contributes to the performance
gap between CLAP and JTRANS.

3.4. The Case of endbr64

Xu et al. [13] already investigated the impact of the
endbr64 instruction on the JTRANS model. Like its 32-
bit counterpart endbr32, the instruction endbr64 is a no-
op used to mark valid targets for indirect control flow in
control flow integrity schemes. It is only emitted under
certain compiler configurations and thus can create a bias
within the dataset. Removing endbr64 led to significant
improvements in JTRANS’s accuracy. We can confirm the
authors’ findings in our experiments: for JTRANS, endbr64
is a very important instruction, which is not the case for the
untrained model. This indeed indicates a bias in the dataset.

For CLAP, endbr64 with only one token appears to be
unimportant. However, we found 629 instances of endbr64
with 20 tokens. Although endbr64 does not take any argu-
ments, IDA Pro added a comment of the form Alternative
name: [...] in those cases, which was included in prepro-
cessing. This means that the instruction’s tokens contained
useful information for the model, which in turn explains
why the saliency of endbr64 with 20 tokens is very high.

4. Discussion

In our experiments, we gradually explored the rela-
tions between underlying, co-dependent variables on the

5

saliency outcome. We started with the fact that the saliency
of an instruction directly correlates with the number of
instructions in a given function and thus continued with
calculating the saliency quantile. Further, the number of
tokens that belong to an instruction influences the resulting
cosine distance which leads us to examining the saliency
quantiles separately for the number of tokens masked. We
suspect more effects like this that we have not yet covered.
For example, so far we do not give special treatment to
instructions occurring multiple times in a function.

When code is compiled with higher optimization set-
tings, compilers begin to inline functions [14], which has a
direct impact on call instructions. Ultimately, all of the
models are trained with the objective of clustering ma-
chine code that was compiled from the same source code.
Thus, the optimization setting is the distinguishing factor
between instances of the same label, i.e., source code origin.
Therefore, it may be interesting to investigate the impact of
optimization settings on saliencies.

In the case of JTRANS, we expected jmp instructions to
be more important than the results showed, especially be-
cause a key pre-training method of JTRANS aims to predict
their corresponding jump targets. This raises the question
whether its jump-awareness even contributes significantly
to the performance of JTRANS. Furthermore, the endbr64
bias severely affects JTRANS’s performance, but CLAP is
not affected by it. Still, we have no explanation why these
effects occur, but we can only observe them.

Note that our analysis of the measurements is not yet
exhaustive. We have focused on control flow altering in-
structions as well as no-op instructions such as endbr64
and nop. For instance, lea seems to have a strong impact
on the final embedding for both CLAP and JTRANS.

Despite extensive research around this topic, results
of explainability techniques still often contradict each
other [15] and comparing the accuracy of explainability
methods is not trivial [16]. It is also not obvious which
explainability technique to choose since there seems to
be no universal method that performs optimally [17]. In
the context of analyzing multidimensional embeddings, we
decided to utilize occlusion-based saliency due to its ease
of use both in terms of implementation and computing
resources. Moving forward, we see value in employing
additional explainability techniques or ensemble methods to
gain complementary insights.

Within the field of occlusion-based saliency methods,
the out-of-distribution issue mentioned previously remains
relevant as well [18]. We acknowledge that systematic ap-
proaches exist to alleviate this issue altogether by modifying
the explanation techniques accordingly [19]. However, since
both CLAP and JTRANS are trained using Masked Language
Modeling, this issue loses significance with our saliency
approach.

5. Related Work

Saliency methods are post-hoc explainability tools that
are commonly applied to existing machine learning models

to identify which parts of an input are deemed relevant.
While we only apply occlusion-based saliency methods
in this paper, other prominent categories include gradient-
based and propagation-based methods as well as surrogate
models [12]. However, these are more challenging to apply
to multidimensional representations [10] as opposed to one-
dimensional predictions, which is why we do not leverage
existing techniques for deep learning based security appli-
cations like LEMNA [20]. In addition to this issue, particu-
larly established surrogate models including LIME [21] and
SHAP [22] are much more computationally expensive.

While our methodology is mostly based on the
occlusion-based saliency [12], our saliency computation
contains additional steps, such as producing a ranked score,
in order to mitigate issues that are specific to the domain of
binary code analysis. In contrast to most related work, we
systematically compare sections of differently sized inputs
and deal with co-dependencies on underlying variables.

Occlusion-based saliency methods have also been used
by Xu et al. [13] in the area of binary analysis. While
the authors also measure the cosine distance between the
original embedding and its perturbed counterpart, the re-
garded instructions are always removed completely from
the function rather than being masked. Furthermore, their
work focuses on detecting and deemphasizing instructions
whose high saliency values stem from different compiler
conventions, whereas we analyze and compare instruction
significance across models and identify potential explana-
tions for model performance beyond the model architecture
or training pipeline.

6. Conclusion

In this work, we apply saliency analysis to binary em-
bedding models. By masking out tokens for each instruction,
we obtain cosine similarities in the resulting embeddings.
Our statistical analysis shows that call instructions are
among the most salient instructions, i.e., the instructions
influencing the models’ outcome the most for both CLAP
and JTRANS, which emphasize control flow in their archi-
tectures. We encourage model developers to perform similar
saliency analyses on their models to verify their models
behave as expected.

Beyond that, we find that the preprocessing step of
embedding binary functions likely plays a pivotal role in
the model performance. Therefore, we see an important
avenue of future work in regarding the preprocessing step as
a separate component to the model architecture. A more de-
tailed comparison of preprocessing strategies could provide
a fruitful basis for further model development.

References

[1] K. Pei, J. Guan, M. Broughton, Z. Chen, S. Yao,
D. Williams-King, V. Ummadisetty, J. Yang, B. Ray,
and S. Jana, “StateFormer: fine-grained type recovery
from binaries using generative state modeling,” in ACM

6

SIGSOFT Symp. Foundations of Software Engineering
(ESEC/FSE), 2021.

[2] H. Wang, W. Qu, G. Katz, W. Zhu, Z. Gao, H. Qiu,
J. Zhuge, and C. Zhang, “jTrans: jump-aware trans-
former for binary code similarity detection,” in Proc.
ACM SIGSOFT Int. Symp. Software Testing and Anal-
ysis (ISSTA). ACM, 2022.

[3] J. Patrick-Evans, M. Dannehl, and J. Kinder, “XFL:
Naming functions in binaries with extreme multi-label
learning,” in Proc. IEEE Symp. Security and Privacy
(S&P). IEEE, 2023, pp. 1677–1692.

[4] H. Kim, J. Bak, K. Cho, and H. Koo, “A transformer-
based function symbol name inference model from
an assembly language for binary reversing,” in Proc.
ACM Asia Conf. Comput. and Commun. Security (ASIA
CCS). ACM, 2023.

[5] H. Wang, Z. Gao, C. Zhang, Z. Sha, M. Sun, Y. Zhou,
W. Zhu, W. Sun, H. Qiu, and X. Xiao, “CLAP: learning
transferable binary code representations with natural
language supervision,” in Proc. ACM SIGSOFT Int.
Symp. Software Testing and Analysis (ISSTA). ACM,
2024, pp. 503–515.

[6] T. Benoit, Y. Wang, M. Dannehl, and J. Kinder,
“BLens: Contrastive captioning of binary functions
using ensemble embedding,” in 34th USENIX Security
Symposium (USENIX Security). USENIX Association,
2025.

[7] X. Li, Y. Qu, and H. Yin, “PalmTree: Learning an
assembly language model for instruction embedding,”
in Proc. ACM SIGSAC Conf. Computer and Commun.
Security (CCS). ACM, 2021, pp. 3236–3251.

[8] J. Patrick-Evans, L. Cavallaro, and J. Kinder, “Prob-
abilistic naming of functions in stripped binaries,”
in Proc. 35th Annu. Computer Security Applications
Conference (ACSAC). ACM, 2020, pp. 373–385.

[9] M. D. Zeiler and R. Fergus, “Visualizing and under-
standing convolutional networks,” in Proc. 13th Euro-
pean Conference Computer Vision (ECCV). Springer,
2014, pp. 818–833.

[10] K. K. Wickstrøm, D. J. Trosten, S. Løkse,
A. Boubekki, K. Ø. Mikalsen, M. C. Kampffmeyer,
and R. Jenssen, “RELAX: Representation learning
explainability,” Int. J. Computer Vision, vol. 131,
no. 6, pp. 1584–1610, 2023.

[11] J. Li, W. Monroe, and D. Jurafsky, “Understand-
ing neural networks through representation erasure,”
arXiv:1612.08220, 2016.

[12] J. Bastings and K. Filippova, “The elephant in the
interpretability room: Why use attention as explana-
tion when we have saliency methods?” in Proc. 3rd
BlackboxNLP Workshop on Analyzing and Interpreting
Neural Networks for NLP. Association for Computa-
tional Linguistics, 2020, pp. 149–155.

[13] X. Xu, S. Feng, Y. Ye, G. Shen, Z. Su, S. Cheng,
G. Tao, Q. Shi, Z. Zhang, and X. Zhang, “Im-
proving binary code similarity transformer models
by semantics-driven instruction deemphasis,” in Proc.
ACM SIGSOFT Int. Symp. Software Testing and Anal-
ysis (ISSTA), 2023, pp. 1106–1118.

[14] A. Jia, M. Fan, W. Jin, X. Xu, Z. Zhou, Q. Tang,
S. Nie, S. Wu, and T. Liu, “1-to-1 or 1-to-
n? investigating the effect of function inlining on
binary similarity analysis,” ACM Trans. Softw. Eng.
Methodol., vol. 32, no. 4, May 2023. [Online].
Available: https://doi.org/10.1145/3561385

[15] S. Krishna, T. Han, A. Gu, S. Wu, S. Jabbari, and
H. Lakkaraju, “The disagreement problem in explain-
able machine learning: A practitioner’s perspective,”
Trans. Machine Learning Research, 2024.

[16] S. Konate, L. Lebrat, R. Santa Cruz, E. Smith,
A. Bradley, C. Fookes, and O. Salvado, “A comparison
of saliency methods for deep learning explainability,”
in 2021 Digital Image Computing: Techniques and
Applications (DICTA). IEEE, 2021, pp. 01–08.

[17] T. Han, S. Srinivas, and H. Lakkaraju, “Which ex-
planation should I choose? A function approximation
perspective to characterizing post hoc explanations,” in
Advances in Neural Information Processing Systems 35
(NeurIPS), 2022.

[18] H. Zhao, H. Chen, F. Yang, N. Liu, H. Deng, H. Cai,
S. Wang, D. Yin, and M. Du, “Explainability for large
language models: A survey,” ACM Trans. Intelligent
Systems and Technology, vol. 15, no. 2, pp. 1–38, 2024.

[19] L. Qiu, Y. Yang, C. C. Cao, Y. Zheng, H. Ngai,
J. Hsiao, and L. Chen, “Generating perturbation-based
explanations with robustness to out-of-distribution
data,” in Proc. ACM Web Conference 2022 (WWW),
2022, pp. 3594–3605.

[20] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing,
“LEMNA: explaining deep learning based security ap-
plications,” in Proc. ACM SIGSAC Conf. Comput. and
Commun. Security (CCS). ACM, 2018, pp. 364–379.

[21] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why
should I trust you?’ Explaining the predictions of any
classifier,” in Proc. 22nd ACM Int. Conf. on Knowledge
Discovery and Data Mining (KDD), 2016, pp. 1135–
1144.

[22] S. M. Lundberg and S. Lee, “A unified approach to
interpreting model predictions,” in Advances in Neural
Information Processing Systems 30 (NIPS), 2017, pp.
4768–4777.

7

https://doi.org/10.1145/3561385

	Introduction
	Methodology
	Results
	The Importance of call Instructions
	The Effect of Training
	Call Targets
	The Case of endbr64

	Discussion
	Related Work
	Conclusion

