
Proving Memory Safety of Floating-Point Computations
by Combining Static and Dynamic Program Analysis

Patrice Godefroid
Microsoft Research
Redmond, WA, USA

pg@microsoft.com

Johannes Kinder
∗

Technische Universität Darmstadt
Darmstadt, Germany

kinder@cs.tu-darmstadt.de

ABSTRACT
Whitebox fuzzing is a novel form of security testing based on dy-
namic symbolic execution and constraint solving. Over the last
couple of years, whitebox fuzzers have found many new security
vulnerabilities (buffer overflows) in Windows and Linux applica-
tions, including codecs, image viewers and media players. Those
types of applications tend to use floating-point instructions avail-
able on modern processors, yet existing whitebox fuzzers and SMT
constraint solvers do not handle floating-point arithmetic. Are there
new security vulnerabilities lurking in floating-point code?

A naive solution would be to extend symbolic execution to float-
ing-point (FP) instructions (months of work), extend SMT solvers
to reason about FP constraints (months of work or more), and then
face more complex constraints and an even worse path explosion
problem. Instead, we propose an alternative approach, based on
the rough intuition that FP code should only perform memory safe
data-processing of the “payload” of an image or video file, while
the non-FP part of the application should deal with buffer alloca-
tions and memory address computations, with only the latter be-
ing prone to buffer overflows and other security critical bugs. Our
approach combines (1) a lightweight local path-insensitive “may”
static analysis of FP instructions with (2) a high-precision whole-
program path-sensitive “must” dynamic analysis of non-FP instruc-
tions. The aim of this combination is to prove memory safety of the
FP part of each execution and a form of non-interference between
the FP part and the non-FP part with respect to memory address
computations.

We have implemented our approach using two existing tools for,
respectively, static and dynamic x86 binary analysis. We present
preliminary results of experiments with standard JPEG, GIF and
ANI Windows parsers. For a given test suite of diverse input files,
our mixed static/dynamic analysis is able to prove memory safety
of FP code in those parsers for a small upfront static analysis cost
and a marginal runtime expense compared to regular dynamic sym-
bolic execution.

∗The work of this author was done mostly while visiting Microsoft.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’10, July 12–16, 2010, Trento, Italy.
Copyright 2010 ACM 978-1-60558-823-0/10/07 ...$10.00.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification;
D.2.5 [Software Engineering]: Testing and Debugging;
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs

General Terms
Verification, Algorithms, Reliability

Keywords
Static and Dynamic Program Analysis, Program Verification

1. INTRODUCTION
Whitebox fuzzing [10] is a promising new form of security test-

ing based on dynamic test generation [3, 8]. Starting with a well-
formed input, whitebox fuzzing executes the program under test
while simultaneously performing symbolic execution to generate
input constraints from conditional statements that capture the pro-
gram execution path. Those constraints are then systematically
negated and solved with a constraint solver, generating new test in-
puts to exercise different execution paths of the program. This pro-
cess is repeated with the goal of exercising many program paths and
finding many bugs. Over the last couple of years, whitebox fuzzers
have found many new security vulnerabilities (buffer overflows) in
Windows [10] and Linux [14] applications, including codecs, im-
age viewers and media players. Notably, whitebox fuzzing was
recently credited to have found roughly one third of all the bugs
discovered by file-fuzzing during the development of Microsoft’s
Windows 7 [7].

Many image and video codecs use floating-point instructions
available on modern processors. Yet existing whitebox fuzzers do
not generate constraints for floating-point code, perhaps because
current mainstream SMT solvers (such as STP, Yices, and Z3, to
name a few) do not handle floating-point arithmetic.

In this paper, we present a new technique for proving memory
safety of floating-point (FP) computations that does not require pre-
cise symbolic reasoning about FP code. The basic idea is to treat
all FP values as a single special symbolic value “FP-tag” during
symbolic execution, and to leverage existing symbolic evaluation
rules to perform a dynamic taint-flow analysis of FP-tags. If an FP-
tag is ever used to compute a memory address dereferenced during
dynamic symbolic execution, an error is generated as a warning.

Our intuition is that such warnings should be rare as floating-
point computations should be involved only in the processing of
the “payload” of an image or video input file, not in buffer alloca-
tions and memory address computations, with only the latter being
prone to buffer overflows and other security critical bugs. Indeed,

it would be intuitively surprising if processing, say, a JPEG image
of a white flower would result in a memory safe execution, while
processing the exact same image but with a red flower would trig-
ger a buffer overflow. A related but simpler phenomenon is data
independence in communication protocols [19]: only the control
part (i.e., the header and footer) of a packet influences the behavior
of a protocol entity, while the data part is just forwarded to a lower
or higher protocol layer and is irrelevant to prove correctness. In
contrast, image and media formats are usually much more com-
plex, and the distinction between control and data payload is made
at runtime by treating differently different parts of the input. For
instance, a movie file may start with a declaration that it contains
10,000 chunks of data. After this global header, a stream of all
chunks follows, with each having its own private header describ-
ing whether it contains audio or video data, its size and encoding.
Moreover, assuming we define the payload of a file as the bytes
that are processed by FP code, payload data may influence the con-
trol flow of the image or movie processor whenever floating-point
values are tested in conditional statements.

To prove memory safety of a conditional statement tainted by an
FP-tag during symbolic execution, we use a lightweight static anal-
ysis for conservatively over-approximating all possible executions
of the if-then-else block and then skip the entire block during sym-
bolic execution, provided that statically-computed checks are sat-
isfied at runtime. The satisfiability of those checks guarantees that
all possible executions inside the block do not access any memory
address computed using FP-tags or input values, and that all their
side-effects are conservatively represented by new FP-tags injected
when symbolic execution resumes at the end of the block.

We have implemented our approach using two existing tools for
static and dynamic x86 binary analysis, respectively. We present
preliminary results of experiments with standard JPEG, GIF and
ANI processors embedded in Windows (and deployed on nearly a
billion machines worldwide). For a given test suite of diverse input
files, our mixed static/dynamic analysis is able to prove memory
safety of FP code in the observed executions of those parsers for a
small upfront static analysis cost and a marginal runtime expense
compared to regular dynamic symbolic execution, hence avoiding
costly FP constraint generation and solving, and additional tests to
cover FP code.

2. BACKGROUND: SYSTEMATIC
DYNAMIC TEST GENERATION

Dynamic test generation (see [8] for further details) consists of
running the program P under test both concretely, executing the
actual program, and symbolically, calculating constraints on values
stored in program variables and expressed in terms of input parame-
ters. Side-by-side concrete and symbolic executions are performed
using a concrete store M and a symbolic store S , which are map-
pings from memory addresses (where program variables are stored)
to concrete and symbolic values, respectively. A symbolic value is
any expression e in some theory T where all free variables are ex-
clusively input parameters. For any program variable x, M(x) de-
notes the concrete value of x in M, while S (x) denotes the symbolic
value of x in S . For notational convenience, we assume that S (x)
is always defined and is simply M(x) by default if no expression
in terms of inputs is associated with x in S . When S (x) is differ-
ent from M(x), we say that the program variable x is “symbolic”,
meaning that its value is a function of some input(s), which is rep-
resented by the symbolic expression S (x) associated with x in the
symbolic store. We also extend this notation to allow M(e) to de-
note the concrete value of symbolic expression e when evaluated

with the concrete store M. The notation + for mappings denotes
updating; for example, M′ = M + [m 7→ v] is the same map as M,
except that M′(m) = v.

The program P manipulates the memory (concrete and symbolic
stores) through statements or commands, which are abstractions of
the machine instructions actually executed. A command can be
an assignment of the form v := e (where v is a program variable
and e is an expression) or [e1] := e2 (where [e1] is a memory ad-
dress dereference at the address defined by evaluating expression
e1, and e2 is an expression), a conditional statement of the form
if e then C′ else C′′ (where e denotes a Boolean expression,
and C′ and C′′ denote the unique1 next command to be evaluated
when e holds or does not hold, respectively), or stop (which cor-
responds to a program error or normal termination).

Given an input vector I assigning a value Ii to the i-th input pa-
rameter, the evaluation of a program defines a unique finite2 pro-

gram execution s0
C1
→ s1 . . .

Cn
→ sn that executes the finite sequence

C1 . . .Cn of commands and goes through the finite sequence s1 . . . sn

of program states. Each program state is a tuple 〈C,M, S , pc〉where
C is the next command to be evaluated, and pc is a special meta-
variable that represents the current path constraint. For a finite se-
quence w of commands (i.e., a control path w), a path constraint
pcw is a formula of theory T that characterizes the input assign-
ments for which the program executes along w. To simplify the
presentation, we assume that all the program variables have some
unique initial concrete value in the initial concrete store M0, and
that the initial symbolic store S 0 identifies the program variables v
whose values are program inputs (for all those, we have S 0(v) = Ii

where Ii is the corresponding input parameter). Initially, pc is de-
fined to true.

Systematic dynamic test generation [8] consists of systematically
exploring all feasible program paths of the program under test by
using path constraints and a constraint solver. By construction, a
path constraint represents conditions on inputs that need to be sat-
isfied for the current program path to be executed. Given a program
state 〈C,M, S , pc〉 and a constraint solver for theory T , if C is a
conditional statement of the form if e then C′ else C′′, any
satisfying assignment to the formula pc ∧ e (respectively pc ∧ ¬e)
defines program inputs that will lead the program to execute the
then (respectively else) branch of the conditional statement. By
systematically repeating this process, such a directed search can
enumerate all possible path constraints and eventually execute all
feasible program paths.

The search is exhaustive provided that the generation of the path
constraint (including the underlying symbolic execution) and the
constraint solver for the given theory T are both sound and com-
plete, that is, for all program paths w, the constraint solver returns
a satisfying assignment for the path constraint pcw if and only if the
path is feasible (i.e., there exists some input assignment leading to
its execution). In this case, in addition to finding errors such as the
reachability of bad program statements (like assert(false)), a
directed search can also prove their absence, and therefore obtain a
form of program verification.

Theorem 1. (adapted from [8]) Given a program P as defined
above, a directed search using a path constraint generation and
a constraint solver that are both sound and complete exercises all
feasible program paths exactly once.

In this case, if a program statement has not been executed when the
1We assume program executions are sequential and deterministic.
2We assume program executions terminate. In practice, a timeout
prevents non-terminating program executions and issues a runtime
error.

1 evalSymbolic(e) =
2 match (e):
3 case v: // Program variable v
4 return S (&v)
5 case +(e1, e2): // Addition
6 f1 = evalSymbolic(e1)
7 f2 = evalSymbolic(e2)
8 if f1 and f2 are constants
9 return evalConcrete(e)

10 else
11 return createExpression(′+′, f1, f2)
12 case [e1]: // Address dereference
13 c =evalConcrete(e1)
14 mrc =getMemoryRegion(c)
15 if mrc is undefined // passive check
16 error(’memory access violation at address c’)
17 f1 = evalSymbolic(e1)
18 if f1 is not a constant
19 pc = pc ∧ (0 ≤ (f1 − mrc.base) ≤ mrc.size) // active check
20 return S (c)
21 etc.

Figure 1: Symbolic expression evaluation.

1 Procedure executeSymbolic(P,I) =
2 initialize M0 and S 0
3 path constraint pc = true
4 C = getNextCommand()
5 while (C , stop)
6 match (C):
7 case (v := e):
8 M = M + [&v 7→evalConcrete(e)]
9 S = S + [&v 7→evalSymbolic(e)]

10 case ([e1] := e2):
11 M = M + [evalConcrete(e1) 7→evalConcrete(e2)]
12 evalSymbolic([e1]) // passive and active check
13 S = S + [evalConcrete(e1) 7→evalSymbolic(e2)]
14 case (if e then C′ else C′′):
15 b =evalConcrete(e)
16 c =evalSymbolic(e)
17 if b then pc = pc ∧ c
18 else pc = pc ∧ ¬c
19 C = getNextCommand() // end of while loop

Figure 2: Symbolic execution.

search is over, this statement is not executable in any context. In
practice, path constraint generation and constraint solving are usu-
ally not sound and complete. When a program expression cannot
be expressed in the given theory T decided by the constraint solver,
it can be simplified using concrete values of sub-expressions, or re-
placed by the concrete value of the entire expression.

Note that the above formalization and theorem do apply to pro-
grams containing loops or recursion, as long as all program execu-
tions terminate. However, in the presence of a single loop whose
number of iterations depends on some unbounded input, the num-
ber of feasible program paths becomes infinite. In practice, termi-
nation can always be forced by bounding input values, loop itera-
tions, or recursion, at the cost of potentially missing bugs.

Figure 1 illustrates how to symbolically evaluate expressions e
involved in program instructions; Figure 2 shows how to generate
a path constraint while symbolically executing a program. &v de-
notes the address at which the value of v is stored. As in [9], all
symbolic expressions e ever used in the left hand-side (lines 9 and
13 of Figure 2) or right hand-side (line 12 of Figure 2) of an as-
signment statement or in the Boolean expression of a conditional
statement (line 16 of Figure 2) are checked for memory access vi-
olations. Whenever a memory address is dereferenced during exe-
cution, an expression of the form [e] is evaluated to compute that
address. The concrete value c of the address is checked “passively”

(in line 15 of Figure 1) to make sure it points to a valid memory re-
gion mrc; then the symbolic expression e is also checked “actively”
by injecting a new constraint in the path constraint (line 19 of Fig-
ure 1) to make sure other input values cannot trigger a buffer over-
flow or underflow at this point of the program execution [9]. How
to keep track of the base address mrc.base and size mrc.size of each
valid memory region mrc during the execution of the program P is
discussed in [5]. To simplify the presentation, Figure 1 only han-
dles single symbolic pointer dereferences (by returning the value
S (c) in line 20), but could be extended to handle multiple levels of
pointer indirections [5].

Given two program executions w and w′, we write w ≡P w′ if
they execute the same (finite) sequence of commands. Observe
that w ≡P w′ implies pcw = pcw′ since both execute the same
control path. Let an extended path constraint epc denote a path
constraint extended with buffer-overflow checks injected as in line
19 of Figure 1. We write w ≡P+B w′ if w ≡P w′ and epcw = epcw′ .
Thus, two executions w and w′ are equivalent with respect to ≡P+B if
they execute the same control path in the extended program P + B
which extends the original program P with bound checks for all
memory accesses. Such bound checks are useful to prove memory
safety.

Theorem 2. (adapted from [9]) Given an extended program P+

B as defined above, a directed search using an extended path con-
straint generation and a constraint solver that are both sound and
complete exercises all feasible program paths exactly once. More-
over, if no runtime error is ever generated by line 16 of Figure 1,
all program executions are memory safe.

3. PROBLEM DEFINITION
For security analysis, the advantages of binary analyses are well

established: static [2,12] or dynamic [10,14] binary analyses allow
to analyze the exact program that is being shipped to customers
and that includes important details such as code transformations
performed by compilers. In this work, we adopt a similar approach
and build upon two existing tools for, respectively, static and dy-
namic x86 binary analysis of Windows applications. Specifically,
the tool we extend for dynamic symbolic execution handles a large
set of x86 instructions, but no floating-point (FP) instructions.

We use the term FP instructions to refer to the about 100 floating
point and over 300 SIMD instructions in the x86 architecture [11].
Floating point instructions execute on the x87 FPU, which used to
be a separate physical unit on early x86 platforms. They primar-
ily read from and write to the FPU’s own register stack (st(0)
to st(7)) and its status-, control-, and tag-registers. SIMD (Sin-
gle Instruction, Multiple Data) instructions have been introduced
into x86 as the MMX, 3DNow!, SSE, SSE2, SSE3, SSSE3, and
SSE4 extensions [17]. These instructions also use special registers
(mmx0-7 as aliases of the FPU register stack, xmm0-15, and the
control- and status register) and are specifically tailored towards
fast vector operations. We refer to all registers used exclusively
by floating point and SIMD instructions as FP-registers. Thus, the
value stored in an FP-register can only be moved to memory or a
regular register by an FP instruction.

For instance, here is an example of floating point code that loads
a variable, multiplies it with a constant, and stores the result:

fld qword ptr x
x := x * 2.3; fmul qword ptr flt2_3

fstp qword ptr x

Formally, we now assume that the program P to be analyzed
actually executes two types of assignment statements: (1) floating-
point (FP) assignments of the form v := e or [e′] := e where v

is a floating-point program variable (register) or e is an expression
in some larger, possibly undecidable, theory T ′ ⊃ T including the
decidable theory T ; and (2) regular (i.e., non-FP) assignment state-
ments as defined in the previous section. For simplicity, we will use
the terms FP assignments and non-FP assignments to distinguish
both assignment types in what follows.

For a 32-bit processor, x86 memory addresses [e′] are defined by
expressions e′ of the form “base+index*scale+offset”, where base
and index are general-purpose 32-bit registers, scale is the constant
1, 2, 4, or 8, and offset is a 32-bit constant value. This convention
holds regardless of the type of the value being stored at the address
(e.g., a single byte, a 32-bit value, or a floating-point value).

After executing FP assignments, a subsequent conditional state-
ment if e then C′ else C′′ may have its expression e be de-
pendent on an FP value. We then call it an FP-dependent condi-
tional statement.

For instance, the conditional statement in the code below is FP-
dependent:
double x; int c;

...
if (x > 2.3) {
c: = 1;

}
...

...
fld qword ptr x
fcomp flt2_3
fnstsw ax
and ah, 41h
jnz l
mov dword ptr c, 1

l:
...

Note that there are no branching FP instructions in x86. In-
stead, there are different idioms for implementing FP-dependent
conditional statements in assembly language. One of these idioms
is illustrated in the above example, where the result of the float-
ing point comparison is moved into the ax register by the fnstsw
(“store FPU status word”) instruction; the high byte of ax is then
tested using integer instructions. All idioms have in common that
the EFLAGS register is set according to the result of an FP compu-
tation. This is required since all x86 conditional jumps (and moves)
depend on EFLAGS.

Still, extending symbolic execution to handle all or most FP in-
structions would require adding hundreds of cases to Figure 1, as
well as a constraint solver to solve those constraints, which would
generate many new tests with new FP input values and would make
path explosion even worse.

Our goal is to obtain a theorem similar to Theorem 2 to prove
memory safety of executions involving FP computations, but with-
out precisely symbolically reasoning about the larger FP theory T ′.
How can we achieve this?

4. DEALING WITH FP INSTRUCTIONS
We now describe an approach to proving memory safety of float-

ing point computations without expanding symbolic execution, con-
straint generation, and constraint solving to theory T ′. Our ap-
proach combines a local, lightweight, path-insensitive, “may” static
analysis of FP instructions with a global, high-precision, context
and path-sensitive, “must” dynamic analysis of non-FP instructions.
The aim of this combination is (1) to prove the memory safety of
each individual FP instruction in their specific run-time execution
context, and (2) to prove a form of non-interference between the
FP-part and the non-FP part of the program in order to prove mem-
ory safety of indirect FP-dependencies through conditional state-
ments and casts from FP-values to non-FP values. In this section,
we present a simple algorithm following this general approach,
while the next section presents a refined algorithm.

The first algorithm starts by computing statically for each FP-

1 * Procedure checkAssignment(C) =
2 * if C is an FP-assignment // new case
3 * ∀m ∈ WriteAddrOrReg(C) : S = S + [m 7→FP-tag]
4 * return
5

6 Procedure executeSymbolicFP(P,I) =
7 initialize M0 and S 0
8 path constraint pc = true
9 C = getNextCommand()

10 while (C , stop)
11 match (C):
12 case (v := e):
13 M = M + [&v 7→evalConcrete(e)]
14 S = S + [&v 7→evalSymbolicFP(e)]
15 * checkAssignment(C)
16 case ([e1] := e2):
17 M = M + [evalConcrete(e1) 7→evalConcrete(e2)]
18 evalSymbolicFP([e1]) // passive and active check
19 S = S + [evalConcrete(e1) 7→evalSymbolicFP(e2)]
20 * checkAssignment(C)
21 case (if e then C′ else C′′):
22 b =evalConcrete(e)
23 c =evalSymbolicFP(e)
24 * if c = FP-tag
25 * error(’FP-tag-dependent test detected ’)
26 if b then pc = pc ∧ c
27 else pc = pc ∧ ¬c
28 C = getNextCommand() // end of while loop

Figure 3: New symbolic execution extended to FP assignments.

assignment command C a set WriteAddrOrReg(C) of memory ad-
dresses or regular (non-FP) registers that are being written to dur-
ing the execution of C.

Example 1. For the FP assignment C

fld [esi+eax]

which loads the FP value stored at address esi+eax into the FP
stack, WriteAddrOrReg(C) = ∅.

Example 2. For the FP assignment C

fstp qword ptr [edi+ecx]

which loads the FP value stored on top of the FP stack into mem-
ory at address edi+ecx, WriteAddrOrReg(C) = {(edi+ecx), . . . ,
(edi+ecx+7)} (where (e) denotes the address obtained by evaluat-
ing the expression e and [x . . . y] denotes an interval from address
x to address y).

Example 3. For the FP assignment C

movd eax, xmm0

which loads part of the FP value stored in the FP register xmm0 into
the non-FP register eax, WriteAddrOrReg(C) = {eax}.

The sets WriteAddrOrReg(C) can be computed for each FP-as-
signment C statically at compile time or on-demand at run time.
These sets are much easier to define and compute than a precise
symbolic execution of C. In fact, they provide a conservative ap-
proximation of the side-effects of C during symbolic execution as
shown in Figure 3.

Figure 3 is similar to Figure 2 except for the lines prefixed by *.
Whenever an assignment statement C is encountered during sym-
bolic execution, the function checkAssignment() is called (in
lines 15 or 20) to check whether C is an FP-assignment. If so,

1 evalSymbolicFP(e) =
2 match (e):
3 case v: // Program variable v
4 return S (&v)
5 case +(e1, e2): // Addition
6 f1 = evalSymbolicFP(e1)
7 f2 = evalSymbolicFP(e2)
8 * if f1 =FP-tag or f2 =FP-tag
9 * return FP-tag

10 if f1 and f2 are constants
11 return evalConcrete(e)
12 else
13 return createExpression(′+′, f1, f2)
14 case [e1]: // Address dereference
15 f1 = evalSymbolicFP(e1)
16 * if f1 =FP-tag
17 * error(’FP-tag-dependent address detected ’)
18 c =evalConcrete(e1)
19 mrc =getMemoryRegion(c)
20 if mrc is undefined // passive check
21 error(’memory access violation at address c’)
22 if f1 is not a constant
23 pc = pc ∧ (0 ≤ (f1 − mrc.base) ≤ mrc.size) // active check
24 return S (c)
25 etc.
26 * default: // any FP-specific expression
27 * return FP-tag

Figure 4: New symbolic expression evaluation with FP-tag.

regular symbolic execution of the assignment C is replaced3 as fol-
lows: the symbolic value of every memory address and register in
WriteAddrOrReg(C) becomes the special symbolic value FP-tag in
the symbolic store (line 3).

FP-tag is a single symbolic value that represents all possible
floating-point (concrete) values during symbolic execution, as well
as all symbolic expressions that depend on an FP value, hence in-
cluding all possible symbolic expressions in theory T ′ \ T . Sym-
bolic expression evaluation is easily extended to handle FP-tags as
illustrated in Figure 4. The new value FP-tag is an “absorbing el-
ement” with respect to symbolic expression evaluation: the value
of any expression containing FP-tag is FP-tag (e.g., see lines 8-9 of
Figure 4). Also, any FP-specific expression (i.e., in T ′ \ T) returns
FP-tag (lines 26-27 of Figure 4).

As in regular symbolic execution, all memory address derefer-
ences are checked both passively and actively for memory access
violations (see Section 2). If any memory address ever depends
on an FP-tag, an error is (conservatively) generated in line 17 of
Figure 4.

The algorithm of Figure 3 also generates an error if the Boolean
expression of any conditional statement ever becomes the value FP-
tag (lines 24-25).

Let M(m, s) and S (m, s) denote the value of memory location m
in state s in the concrete store M or symbolic store S , respectively.
Given any two states s and s′, we write s ≡FP s′ if ∀m : M(m, s) =

M(m, s′) or S (m, s) = S (m, s′) = FP-tag. Thus, the ≡FP equiv-
alence is very tight: two states that are ≡FP equivalent can only
differ in any memory location by the concrete floating-point value
abstracted by the symbolic value FP-tag.

We extend the notation to define equivalence classes of program

executions: given two program executions w = s0
C1
→ s1 . . .

Cn
→ sn

and w′ = s′0
C′1
→ s′1 . . .

C′n
→ s′n, we write w ≡FP w′ if ∀i : si ≡FP

s′i ∧Ci = C′i .

3To keep the notation simple, in case of FP assignments, we assume
the symbolic store updates in lines 14 and 19 of Figure 3 are no-ops
(e.g., when v is a FP variable) that are subsumed by the updates in
line 3 of checkAssignment().

Theorem 3 (memory safety). Given a program P as defined
above with FP and non-FP assignments, if the algorithm of Fig-
ures 3 and 4 does not generate any error for an execution w, then
for all executions w′ such that w′ ≡FP w, we have w′ ≡P+B w, and
all executions w′ are memory safe.

Proof. We first show that if the algorithm does not generate any
error for execution w, then w ≡FP w′ implies w ≡P+B w′. First,
during the execution w, no conditional statement ever depends on
an FP-tag (otherwise contradiction by lines 24-25 of Figure 3),
therefore w ≡P w′. Second, all memory accesses during the ex-
ecution w are checked in lines 14-24 of Figure 4 (due to calls to
evalSymbolicFP() in lines 14, 18, 19 and 23 of Figure 3); more-
over, no memory address ever depends on an FP-tag (otherwise an
error would be generated in line 17 of evalSymbolicFP()). This
implies w ≡P+B w′.

Since w is memory safe (any non-memory safe access would
trigger an error by line 21 of evalSymbolicFP()), w ≡P+B w′

implies that w′ is memory safe, too.

Corollary 4. If the number of program executions w that are
distinct with respect to ≡P+B is finite, all those can be enumerated
by a directed search and, if the algorithm of Figures 3 and 4 never
generates any error for any of these executions, the entire program
P is memory safe.

Note that if the algorithm of Figures 3 and 4 reports an error of
the type “FP-tag-dependent address or test detected”, this does not
necessarily imply that the program is not memory safe. Indeed,
the injection of FP-tags in line 3 of checkAssignment() and their
propagation using rules like in lines 8-9 of evalSymbolicFP()
are conservative: the FP-tag value abstracts and blends together
concrete values that might have been otherwise distinguished by
FP constraints injected in the path constraint either in lines 26-27
of executeSymbolicFP() or in line 23 of evalSymbolicFP(),
if symbolic execution and constraint solving had been extended to
handle FP constraints in T ′.

5. DEALING WITH FP-DEPENDENT
CONDITIONAL STATEMENTS

The previous algorithm reports an error whenever the Boolean
expression e of any conditional statement depends on an FP-tag.
Unfortunately, FP-dependent conditional statements that test float-
ing-point values are frequent in practice, as illustrated in the second
example in Section 3 and as will be discussed later in the experi-
ments of Section 7. In those cases, the previous algorithm is not
sufficient, as it will generate too many alarms.

In this section, we present a refined algorithm that can eliminate
many of those alarms. The main idea is to treat an entire if-then-
else block depending on an FP-tag as a single FP instruction: a
lightweight static analysis is used to over-approximate all possible
executions inside that block, starting from the conditional statement
C until its unique immediate postdominator instruction ipdom(C),
and to compute two sets AddrReg(C) and WriteAddrOrReg(C) for
the entire block starting at C:

• AddrReg(C) is a set of regular (non-FP) registers whose value
at the time of executing C may be used to compute a mem-
ory address being read or written during the execution of C
to ipdom(C); if any value from memory may be used to com-
pute an address (multiple dereferences) during the execution
of C to ipdom(C), AddrReg(C) is set to a special value “un-
safe”.

1 Procedure executeSymbolicFPV2(P,I) =
2 initialize M0 and S 0
3 path constraint pc = true
4 C = getNextCommand()
5 while (C , stop)
6 match (C):
7 case (v := e):
8 M = M + [&v 7→evalConcrete(e)]
9 S = S + [&v 7→evalSymbolicFP(e)]

10 checkAssignment(C)
11 case ([e1] := e2):
12 M = M + [evalConcrete(e1) 7→evalConcrete(e2)]
13 evalSymbolicFP([e1]) // passive and active check
14 S = S + [evalConcrete(e1) 7→evalSymbolicFP(e2)]
15 checkAssignment(C)
16 case (if e then C′ else C′′):
17 b =evalConcrete(e)
18 c =evalSymbolicFP(e)
19 * if c = FP-tag
20 * if (AddrReg(C) = unsa f e) or
21 * (∃reg ∈ AddrReg(C) : S (®) , M(®))
22 * error(’Unsafe FP-dependent conditional ’)

23 * C̄ = C
24 * while (C̄ , ipdom(C)) C̄ = getNextCommand()
25 * ∀m ∈ WriteAddrOrReg(C) : S = S + [m 7→FP-tag]
26 * C = C̄; continue // end of while loop
27 else if b then pc = pc ∧ c
28 else pc = pc ∧ ¬c
29 C = getNextCommand() // end of while loop

Figure 5: New symbolic execution extended to FP assignments
and FP-dependent conditionals.

• WriteAddrOrReg(C) is a set of memory addresses or regular
(non-FP) registers that may be written to during the execu-
tion of C to ipdom(C); if a memory address cannot be ex-
pressed by the static analysis for the time immediately before
executing ipdom(C) (e.g., a pointer register is overwritten af-
ter an access), AddrReg(C) is set to “unsafe”.

The immediate postdominator ipdom(C) can be efficiently deter-
mined using standard algorithms [13]; the two sets AddrReg(C)
and WriteAddrOrReg(C) are over-approximated and a default value
of “unsafe” is used for AddrReg(C) when complicated code is en-
countered. There are different ways to cheaply compute this over-
approximation. In Section 6 we outline a simple algorithm that
yields sufficiently precise approximations without full-blown sym-
bolic execution. Before executing the program, this static anal-
ysis algorithm is run to pre-compute ipdom(C), AddrReg(C) and
WriteAddrOrReg(C) for every conditional statement C in the pro-
gram under test.

Figure 5 presents the refined symbolic execution algorithm which
is similar to the one of Figure 3 except for the new lines 19-26
prefixed with a *. Now, whenever symbolic execution hits an FP-
dependent conditional statement C, instead of immediately report-
ing an error, the refined algorithm attempts to proceed by “skip-
ping” the entire if-then-else block. First, if any register in the
statically precomputed AddrReg(C) has any symbolic value, i.e.,
is either input-dependent or FP-tag, an error is generated (lines
20-22). Otherwise, symbolic execution proceeds until ipdom(C)
is reached (lines 23-24). Just before resuming symbolic execution
at ipdom(C) (line 26), the symbolic value of every memory address
and register in WriteAddrOrReg(C) becomes FP-tag in the sym-
bolic store (line 25).

Given two program executions w and w′, we write w ≡P+FP w′ if
w ≡FP w′ except at FP-dependent conditional statements C, where
they are allowed to follow different branches and execute different
commands until either both of them eventually reach ipdom(C), or
at least one of them never reaches ipdom(C) (due to early termina-

tion or non-termination). Thus, the equivalence relation ≡P+FP is
weaker than ≡P and ≡FP. We also write w ≡P+FP+B w′ if w ≡P′+FP

w′ where P′ is P extended with bound checks for all memory ac-
cesses.

A program execution w is called attacker memory safe if ev-
ery buffer access during w in the program P extended with bound
checks for all memory accesses is either within bounds (i.e., is
memory safe) or is input-independent, i.e., its address has no input-
dependent symbolic value, and hence is not directly controllable by
an attacker through the untrusted input interface.

Thus, the notion of “attacker memory safe” is weaker than mem-
ory safety: if a program execution is memory safe, this implies that
the execution is attacker memory safe, while the converse does not
hold. Nevertheless, in the context of security testing, we are pri-
marily interested in attacker memory safety since buffer overflows
where the overflow is fixed and cannot be directly controlled by
the attacker are likely much harder to exploit. We now show that
the algorithm of Figure 5 can only guarantee this weaker form of
memory safety.

Theorem 5 (attacker memory safety). Given a program P as
defined above with FP and non-FP assignments and regular and
FP-dependent conditional statements, if the algorithm of Figures 5
and 4 does not generate any error for an execution w, then for all
executions w′ such that w′ ≡FP w, we have w′ ≡P+FP+B w, and all
executions w′ are attacker memory safe.

Proof. We show that if the algorithm does not generate any
errors for execution w, then w ≡FP w′ implies w ≡P+FP+B w′.
Since w ≡FP w′, for each conditional statement C reached by those
executions, either the conditional statement does not depend on
an FP-tag and the two executions execute the same branch at C
and subsequent instructions, or the conditional statement depends
on an FP-tag and the two executions are allowed to diverge un-
til ipdom(C) is reached. Moreover, all possible side-effects of all
possible executions between C and ipdom(C) are covered with FP-
tags when ipdom(C) is executed (line 25 of executeSymbolic-
FPV2()). Thus, if s and s′ denote the states of w and w′ when they
both reach ipdom(C), respectively, we have s ≡FP s′. This implies
that w ≡P+FP w′.

During the execution of w, all memory accesses performed dur-
ing symbolic execution are checked to be memory safe in lines
14-24 of evalSymbolicFP() (called in lines 9, 13, 14 and 18
of executeSymbolicFPV2()). Moreover, all memory accesses
that can possibly happen during all possible program executions
between every FP-conditional statement C and ipdom(C) are con-
servatively represented by AddrReg(C), and all those memory ac-
cesses are checked in lines 20-21 to be both input- (i.e., attacker-)
independent and FP-tag-independent (otherwise an error would be
generated in line 22). Therefore, no memory access ever depends
on an FP-tag and we have w ≡P+FP+B w′.

Furthermore, all memory accesses in w are either memory safe
during symbolic execution or input-independent between FP-de-
pendent conditional statements C and their ipdom(C). By defini-
tion, w is then attacker memory safe. Since w ≡P+FP+B w′, w′ is
attacker memory safe too.

The correctness guarantees provided by Theorem 5 are weaker
than those provided by Theorem 3, since attacker memory safety
is weaker than memory safety. Indeed, executions w′ such that
w ≡FP w′ can take different executions paths between FP-depen-
dent conditional statements C and their ipdom(C), and some of
those other paths may trigger memory access violations or other
runtime errors (such as division-by-zero or infinite loops). Since
we do not generate FP constraints for those conditional statements

C, we cannot generate tests to exercise those paths and hit those
errors. Nevertheless, our algorithm can guarantee that no such path
ever contains an input or FP-dependent memory access.

6. PROTOTYPE IMPLEMENTATION
We have implemented our approach as an extension to the exist-

ing whitebox fuzz testing tool SAGE [10]. For exploring execution
paths of a program under test, the tool starts from a well-formed
input file and systematically manipulates input bytes to drive exe-
cution into new branches.

We extended the symbolic execution engine of SAGE to incorpo-
rate our new algorithm in Figure 5. To calculate the AddrReg and
WriteAddrOrReg sets, we built a separate static analysis tool that
processes the binary under test and all referenced dynamic libraries.
The static analysis tool is based on Microsoft Vulcan [4], a mature
framework for parsing, analyzing, and instrumenting compiled bi-
naries. Dynamic libraries (DLLs) can be conditionally loaded at
runtime, and it is not always possible to statically determine the
full set of DLLs that may be accessed. If symbolic execution en-
counters an instruction belonging to the address space of a library
for that no static information has been generated, the static analysis
has to be invoked on that particular library to generate the missing
information.

Static Information.
For an executable or DLL, our tool computes the AddrReg and

WriteAddrOrReg sets for all individual FP instructions and for all
conditional jumps. We tried to keep the static analysis as fast and
simple as possible but as precise as necessary to prove FP depen-
dent conditional jumps to be attacker memory safe (provided that
the values of registers in AddrReg are input-independent and not
FP-tag). Without knowledge about the actual semantics of an in-
struction, disassemblers such as the one included in Vulcan are still
able to extract source and destination operands from it by decoding
the relevant bytes in the instruction stream. Typically, elaborate ta-
bles are used for mapping bytes to instructions, which also expose
implicit register operands (e.g., eax is an implicit source and target
in mul cx). When processing an individual FP instruction, target
operands are added to the WriteAddrOrReg set.

The WriteAddrOrReg and AddrReg sets for conditionals need to
capture the effects of all control-dependent instructions. We have
implemented a flow insensitive interprocedural analysis for deter-
mining both sets. Both branches of each conditional jump are ex-
plored up to but not including the immediate postdominator of the
jump. For each instruction in the branches, its destination operands
are added to WriteAddrOrReg, and the base and index registers of
any memory operands are added to AddrReg. If the intersection
of both sets is non-empty, i.e., if any of the dereferenced registers
is manipulated in the control-dependent block, our analysis reports
the conditional as unsafe. For example, consider the following loop
controlled by an FP expression:

input double x;
int a[10]; int i=0;
while (x > 2.3)
x = x/2.4;
a[i++] = (int)x;

Our static analysis would return “unsafe” for the condition control-
ling the loop when analyzing it up to its immediate postdominator
(which is the next statement after the while loop). This is neces-
sary, since pointer manipulation in an FP-dependent control block
could be vulnerable to an attack that might not be detected by the
dynamic analysis.

When all pointers are constant within a conditional block, all
target memory addresses can be easily determined and represented
in a single pass. No special treatment of loops is required, since
the analysis is flow and path insensitive. In our implementation,
memory locations in WriteAddrOrReg can be of the form [base +

offset], where base is a register and offset an integer. The restriction
that pointers remain constant also excludes multiple dereferences
within a single block, which in x86 requires assigning an address
to an intermediate register.

Disallowing any changes to dereferenced registers is too strict
for handling the stack pointer (esp) and push/pop. E.g., parame-
ters of function calls are pushed onto the stack in Windows’ stan-
dard calling convention, thereby modifying and dereferencing the
stack pointer in one instruction. We use a standard path-insensitive
stack-height analysis supplied by Vulcan to determine at every in-
struction the offset of esp from the base of the procedure’s stack
frame. In compiler generated code, this offset is always constant for
a certain instruction. We can thus replace references to esp-based
local variables with equivalent stack frame based memory locations
in the WriteAddrOrReg set. At the immediate postdominator of the
conditional jump, these locations are then translated back to esp
based addresses.

Function calls within a conditional block are supported by our
tool, which recursively calculates AddrReg and WriteAddrOrReg
for complete procedures in standard bottom up fashion and adds
these sets at call sites. Care must be taken to correctly translate
stack frame relative addresses in the WriteAddrOrReg set of the
callee into the stack frame of the caller. Some procedures set up
and use a frame pointer in ebp for referencing local variables, so
ebp would show up in both sets. We solve this problem by using
the same translation as for esp, and express all ebp based local
variables as stack frame relative addresses (in Visual C, ebp always
has an offset of 4 from the stack frame).

This approach also handles recursive or mutually recursive func-
tions, since it is not necessary for WriteAddrOrReg to record up-
dates to stack frames which have become invalid at the immediate
postdominator of the original conditional statement. Any other side
effects are over-approximated by one pass of a function, since other
pointers than the stack and frame pointer have to remain constant,
otherwise the static analysis is aborted and returns the default value
unsafe for AddrReg.

Control Flow Information.
Calculating immediate postdominators for conditional jumps re-

quires precise control flow information. Our prototype correctly
handles procedures with multiple exits, non-returning procedure
calls (e.g., ExitProcess), inter-procedure jumps (e.g., to shared
error handling code), and the tail-jump optimization; it currently
does not support implicit control flow through exceptions raised by
instructions or in callees. If an immediate postdominator cannot
be statically determined for a conditional jump (e.g., because one
branch terminates), the implementation reports the conditional to
be unsafe.

We rely on Vulcan to decode instructions, identify procedures,
and provide control flow information. Soundness of our implemen-
tation therefore depends on the soundness of Vulcan’s analysis.

SSA optimizations in the C runtime library.
With our assumption that floating point and SSE instructions are

used exclusively for payload processing, we did not expect pointers
to be modified by them. However, it turned out that the implemen-
tations of memset and memcpy in Microsoft’s C runtime use SSA

instructions for speed, if the CPU supports them and if the memory
blocks happen to be 16-byte aligned.

Both cases lead to memory locations falsely being tagged as
floating point data (set to FP-tag), including pointers inside larger
structures. For memset, we extended the static analysis to under-
stand the PXOR (16-byte XOR) and MOVDQA (16-byte move) in-
structions and to perform a simple intraprocedural constant prop-
agation. This suffices to identify the SSA move instructions in-
side memset as assignments of a constant integer value, for which
WriteAddrOrReg is empty. For memcpy, the symbolic execution
should be aware that memory areas are being copied, since when-
ever a portion of input-dependent data is copied, its symbolic value
should be preserved. We handle this as a special case during sym-
bolic execution of the specific code sequence of memcpy to keep
track of the size, source and target addresses of the memory to be
copied.

7. EXPERIMENTAL RESULTS
We report in this section detailed results of experiments with our

implementation and test drivers that invoke the built-in JPEG, GIF,
and ANI image parsers embedded in Windows Vista. Those parsers
are implemented in code spread across various Windows DLLs.
For each parser, we first preprocessed all required libraries using
our static analysis tool. Many of the libraries are unrelated to the
actual parsing but are used for purposes like file access or setting up
the Microsoft COM services. This foundation of common library
code is shared by all parsers, so there is a rather large overlap in the
static information used for them.

Static Preprocessing.
Table 1 gives a breakdown of the results for the static analysis

phase, both individually for each DLL and as a total for each parser.
We analyzed 20 DLLs in total; the JPEG parser loaded 16, the one
for GIF 19, and the one for ANI 15 DLLs. Processing all required
DLLs per parser took about 5 to 10 min on a regular desktop ma-
chine. One of the DLLs, shell32.dll, unfortunately was protected
by binary obfuscation and could not be processed by our prototype.

Our tool created the static information for all conditional jumps
in the program, not only for those which are FP dependent at run-
time, since it is not generally possible to statically determine the
set of FP-dependent conditionals. For over 80% of the conditional
jumps, our lightweight static analysis is not precise enough to prove
anything, and has to flag the conditional as unsafe. However, we
do not try to statically prove memory safety of arbitrary code, but
are only interested in those conditional statements which become
FP-dependent at runtime. All other conditionals should eventually
be explored by the algorithm for directed testing and are thus al-
ready covered. We designed the static analysis towards the patterns
we saw for conditional jumps inside floating point program logic,
extending its power as required to cover all or almost all cases. In
particular, our static analysis reports as unsafe a conditional state-
ment if in one of the branches the same pointer is both modified and
dereferenced (with the exception of the stack and frame pointers, as
explained in the previous section). This includes multiple pointer
dereferences (e.g., expressions such as **p), loops over arrays, and
long code sequences where the same register is used for different
pointers. FP-dependent conditionals in the file parsers we looked at
are usually relatively short and/or limit their effects to FP registers,
so we were able to avoid implementing a more expensive analy-
sis. We did, however, have to make our analysis interprocedural, as
some of the FP-dependent conditionals contained function calls.

About 6% of all conditional jumps are determined to be uncon-
ditionally memory safe, which is the case if the conditional block

contains no dereferences in either branch and AddrReg is empty.
The remaining conditionals do contain dereferences and are condi-
tionally safe: their AddrReg is nonempty and the registers it con-
tains need to be checked for FP-dependent values during symbolic
execution.

Symbolic Execution.
In designing our experiments, we were interested in checking

whether the missing floating point support could have caused our
existing whitebox fuzzer to miss bugs. If our assumption that FP
instructions do not interfere with security critical code is correct,
ignoring FP instructions did not miss any security bugs. We there-
fore focused on replaying the symbolic execution of interesting in-
put files to determine whether all executions terminate without is-
suing warnings, which could be raised due to unsafe FP-dependent
conditionals or FP-dependent memory accesses.

We ran SAGE’s symbolic execution on diverse seed files and dis-
abled constraint solving, so that for each seed file we observed one
complete symbolic execution trace. We used twelve different seed
files per format, randomly selected from a suite of regression tests.
The files were of various sizes, to a combined total size of 238 kB
in the case of JPEG. Only for JPEG we saw a significant amount
of new instructions being covered compared to a single seed file,
and in fact some of the seed files caused more DLLs to be loaded
by the parser. Still, no new warnings were raised compared to the
symbolic execution of the trace for a single seed file per format.
Overall, our implementation of symbolic execution with FP tags,
processing of static information and associated dynamic checks
consistently implies a 20% runtime overhead compared to sym-
bolic execution without FP tags, and therefore comes at an overall
marginal runtime cost.

Table 2 lists the results obtained from symbolically executing
the test drivers on one seed file each; as mentioned above, results
for the other input files are very similar. The total runtime for the
extended symbolic execution were 101 secs for JPEG, 73 secs for
GIF, and 5 seconds for ANI. These executions were performed with
small seed files of 1,092 bytes for JPEG, 2,957 bytes for GIF, and
2,512 bytes for ANI. Numbers in Table 2 are split between occur-
rences of instructions (including repeated executions) and unique
instructions, and also between instructions in the full trace from
initialization to termination and instructions executed after at least
one input byte has been read in the execution trace.

For instance, we ran the JPEG test driver and traced 26.7 mil-
lion instructions (86763 unique), of which 22 million occurred after
reading input. It executed only 89 unique FP instructions after the
input was read, a large portion of which was part of an inner loop
of optimized SSE2 instructions to perform a discrete cosine trans-
form. All three parsers executed FP instructions at some point; in
the case of GIF, however, all FP instructions occurred before any
input was read. None of the FP instructions and also none of the
regular non-branch instructions was found to be unsafe, i.e., no in-
struction ever dereferenced an FP-dependent value.

All three parsers executed conditional jumps where the EFLAGS
register was tagged as being FP-dependent, thus confirming the
need for the over-approximating static analysis we introduced in
Section 5. Table 2 shows the total number of such FP-dependent
conditional jumps, as well as the number of safe and unsafe FP
conditionals. An FP-dependent conditional C is listed as safe if
the block up to ipdom(C) was successfully over-approximated and
found to be memory safe using C’s static information. C is listed as
unsafe if the static analysis has failed and AddrReg in C’s static in-
formation was set to unsafe, or if AddrReg contains registers hold-
ing FP-tagged values at the time of the jump (we never encountered

DLL JPEG GIF ANI All instr. FP instr. Conditionals Safe Cond. Safe Unsafe Time

advapi32 X X X 156442 75 13370 3.6% 10.0% 86.3% 27s
clbcatq X X 114240 100 12668 24.5% 7.8% 67.7% 27s
comctl32 X X 376620 344 31335 6.1% 14.6% 79.3% 47s
gdi32 X X X 81834 366 8785 3.6% 9.9% 86.5% 11s
GdiPlus X 476642 32147 42154 5.4% 13.4% 81.3% 184s
imm32 X X X 26178 0 2712 5.3% 4.9% 89.9% 6s
kernel32 X X X 15958 12 15958 4.1% 12.4% 83.4% 33s
lpk X X X 5389 45 658 8.1% 16.1% 75.8% 2s
msctf X X X 159228 357 13985 4.5% 8.3% 87.1% 31s
msvcrt X X X 147640 5757 16260 6.0% 12.1% 81.9% 35s
ntdll X X X 207815 649 18876 5.1% 12.6% 82.3% 40s
ole32 X X 367226 99 32677 4.8% 7.1% 88.1% 81s
oleaut32 X X 148777 1335 15484 7.1% 9.6% 83.3% 25s
rpcrt4 X X X 240231 57 18603 5.6% 9.5% 84.9% 31s
shell32 X X - - - - - - -
shlwapi X X 73092 0 6914 7.5% 12.3% 80.3% 9s
user32 X X X 121223 0 11314 7.3% 12.6% 80.0% 16s
usp10 X X X 79990 2 8394 7.7% 11.9% 80.5% 11s
uxtheme X X X 62276 110 5488 5.9% 10.9% 83.2% 7s
WindowsCodecs X 193415 6370 16926 4.4% 7.4% 88.2% 35s

JPEG (Total) 2127862 15334 212158 6.4% 9.8% 83.8% 418s
GIF (Total) 2860801 41455 275635 6.4% 11.1% 82.5% 623s
ANI (Total) 1753916 7774 172652 5.5% 11.7% 82.8% 306s

Table 1: Results from static analysis of DLLs used by the parsers.

All instructions FP instructions Total FP cond. Safe FP cond. Unsafe FP cond.
Full Input Full Input Full Input Full Input Full Input

JPEG Occurrences 26712705 21983468 7826 7320 45 4 39 (87%) 4 6 (13%) 0
Unique 86763 104 89 28 1 26 (93%) 1 2 (7%) 0

GIF Occurrences 8952406 4786801 3856 0 435 0 299 (69%) 0 136 (31%) 0
Unique 133958 68 0 36 0 32 (89%) 0 4 (11%) 0

ANI Occurrences 1581268 1207886 134 39 41 21 35 (85%) 15 6 (15%) 6
Unique 29722 16 13 27 7 25 (93%) 5 2 (7%) 2

Table 2: Results from FP-extended symbolic execution for one input file per parser.

the latter case in our experiments). The JPEG trace contained 45
occurrences of FP-dependent conditional jumps, of which 6 (corre-
sponding to 2 unique jumps) had an unsafe precomputed AddrReg
and 39 were found to be safe. However, all unsafe conditionals
were executed before any data was read from the input file; if the
attacker is only able to control the input file, which corresponds to
our threat model, it is not possible for him to control the branching
behavior of these instructions. Hence, a bug in these condition-
als would surface for all or no inputs, and the entire execution is
attacker memory safe.

In the GIF trace 4 out of 36 unique FP-dependent conditionals
raised warnings, but similar to JPEG, all of them occurred before
any input was read.

For ANI, however, we observed two unsafe unique conditional
jumps after reading the input file. These were the same two con-
ditional jumps from the same DLL (uxtheme.dll) as in the JPEG
trace. Both jumps had an “unsafe” value for AddrReg; the static
analysis was unable to deduce memory safety because in both cases
one of the branches called a rounding function containing sophisti-
cated error handling code that involves multiple functions for noti-
fying an attached debugger and setting a global error status. How-

ever, after a careful visual inspection of the disassembled code, we
are confident the function containing both jumps belongs to ini-
tialization code common with the JPEG parser, the only difference
being that this initialization code is invoked later in the ANI case,
after some inputs have already been read from the input files. Regu-
lar dynamic symbolic execution also indicates that no regular input
ever flows into the entire DLL containing this initialization code,
although it cannot prove that no regular inputs are ever being cast
into some untracked FP-value that later influences the execution of
this initialization code. We nevertheless believe that it is unlikely
that this code is ever called with attacker controllable inputs. A
more sophisticated static and/or dynamic analysis would be needed
to prove this automatically.

Although our static analysis declares 80% of all (FP-dependent
and FP-independent) conditional jumps as being unsafe, it is good
enough to reduce the number of runtime warnings about unsafe
FP-dependent conditional statements to zero or two in the case of
ANI. For the benchmarks considered, the algorithms of section 4
and 5 meet our initial goal of designing an ’as lightweight as possi-
ble’ static analysis to prove non-interference between floating point
code and security critical computations.

Preliminary experiments with other Windows media parsers con-
firm the key observation made in this paper: for most programs in
the application domain we consider, interactions between floating-
point computations and memory allocation and indexing are ex-
tremely rare. For instance, parsing a sample small WMV (Windows
Media Video) file with 27,401 bytes executes 252,715,214 instruc-
tions (including 247,256,201 after the first input byte is read), but
executes only 499 FP-instructions (i.e., less than 0.001% of the total
number of instructions) and 29 FP-tainted conditional statements,
which are proved attacker memory safe with our extended symbolic
execution in 350 secs. We plan to optimize the memory usage of
our current prototype implementation in order to handle longer ex-
ecution traces and hence larger files and more complicated parsers.

8. RELATED WORK AND DISCUSSION
There are many other algorithms combining static and dynamic

program analysis, some also aimed at proving memory safety [16]
or type checking [1, 6]. Our work can be viewed as following
the same general strategy of “prove statically as much as possi-
ble, and use runtime checks as a fallback”. However, a perhaps
unique feature of our analysis is that the abstract domains used for
the static and dynamic parts are quite distinct: we use a simple
path-insensitive static analysis targeting FP instructions and track-
ing memory usage of individual if-then-else blocks, while we use a
(bit-)precise dynamic symbolic execution to reason about the non-
FP part of the program. The key novelty of our approach is the
interplay between these two analyses and abstract domains, and
the new notion of attacker memory safety that this combination is
able to prove. Our analysis also attempts to prove a form of non-
interference [18] between FP computations and memory accesses:
FP values do not influence memory accesses.

In principle, the general strategy of over-approximating instruc-
tions not handled by symbolic execution could be used to prove
memory safety in presence of instructions other than FP instruc-
tions, or to deal with any theory T ′ of constraints outside T for
which we do not want to generate constraints (because T ′ is too
complex, undecidable, expensive, or a solver is simply not read-
ily available for whatever reason). However, this strategy seems to
work well for FP instructions because of the expected non-interfer-
ence of FP values (payload) with address computations (control).
In practice, it is unclear if this strategy would work for other sets of
unhandled instructions or constraints.

The static part of our analysis is conservative and handles multi-
pointer dereferences (by returning ’unsafe’). However, the dynamic
part as presented in Section 2 does not. To handle multiple levels
of pointer dereferences and symbolic writes, the memory model
used in Section 2 would need to be extended as discussed in [5]
for instance. We did not consider this option here to simplify the
exposition, as it is an orthogonal issue, and also because multi-
pointer dereferences involving untrusted inputs are rare.

Recent work has started to address industrial-strength analysis of
FP programs whose functional correctness is critical in some appli-
cation domains like avionics [15]. Also, there is no doubt that SMT
solvers will one day be extended to FP arithmetic. But for proving
only memory safety of FP programs in the application domain we
considered here, our work shows that precise FP reasoning is often
not necessary, which is good news.

Obviously, blackbox fuzzing and other approaches to test gen-
eration based on coverage heuristics only are not limited by FP
instructions. On the other hand, those approaches are less precise
than whitebox fuzzing and can miss many bugs (for instance, all
the security bugs found by SAGE during the development of Win-
dows 7 [7] were actually missed by blackbox fuzzers and static

program analysis). Moreover, blackbox approaches cannot prove
memory safety, and fuzzing the payload part of an input that trig-
gers a memory safe program execution is pointless, hence need-
lessly expensive.

Note that our technique is based on the idea that floating point
code does not influence (attacker) memory safety. We specifically
do not aim to prove correctness of the floating point computations.
We also do not consider other application domains (from avion-
ics, spec FP benchmarks, JavaScript programs where variables have
floating-point value types by default, etc.) where the non-interfer-
ence we seek may not hold. It is also trivial to write down toy
programs for which our analysis technique would fail (simply cast
a double to an integer and then index a buffer with that integer). The
goal of our work is specifically to prove attacker memory safety of
“nearly-secure” image and video parsers that are part of Windows
and deployed on a billion PCs worldwide. Today, we are not aware
of any other practical analysis and tool that can do this for the class
and size of applications we consider.

9. CONCLUSIONS
In this paper, we introduced a new proof technique for attacker

memory safety, which combines lightweight static analysis of float-
ing-point parts of a program with a precise dynamic symbolic exe-
cution of the rest of the program.

We do not require theorem prover support for floating point,
since our goal is not to reason precisely about the floating point
logic of the program, but to prove attacker memory safety. Our
intuition was verified in the examples we considered: the FP part
does not interact in any dangerous way with buffer allocation or
indexing.

As future work we plan to extend our combined analysis to cover
the remaining cases of FP-dependent conditionals considered un-
safe by our prototype. We also plan experiments with more file
parsers, including more complex media players. Furthermore, since
the combined proof strategy we propose is not generally linked to
FP code, we will investigate other areas where dynamic test gen-
eration can benefit from replacing precise symbolic execution by a
coarse and cheap over-approximation.

10. REFERENCES
[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic

typing in a statically-typed language. In Conf. Rec. 16th
Annu. ACM Symp. Principles of Programming Languages
(POPL 1989), pages 213–227. ACM Press, Jan. 1989.

[2] G. Balakrishnan and T. W. Reps. Analyzing memory
accesses in x86 executables. In 13th Int’l Conf. Compiler
Construction (CC 2004), volume 2985 of LNCS, pages 5–23.
Springer, Mar. 2004.

[3] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: Automatically generating inputs of death. In
ACM Conf. Computer and Communications Security (CCS
2006), pages 322–335. ACM Press, Oct. 2006.

[4] A. Edwards, A. Srivastava, and H. Vo. Vulcan: Binary
transformation in a distributed environment. Technical
Report MSR-TR-2001-50, Microsoft Research, 2001.

[5] B. Elkarablieh, P. Godefroid, and M. Levin. Precise pointer
reasoning for dynamic test generation. In Proc. 18th Int’l
Symp. Software Testing and Analysis (ISSTA’09), pages
129–139. ACM Press, July 2009.

[6] C. Flanagan. Hybrid type checking. In Proc. 33rd ACM
SIGPLAN-SIGACT Symp. Principles of Programming
Languages (POPL 2006). ACM Press, Jan. 2006.

[7] P. Godefroid. Software model checking improving security
of a billion computers. In Proc. 16th Int’l SPIN Workshop
Model Checking Software (SPIN 2009), LNCS, page 1.
Springer, June 2009.

[8] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Proc. ACM SIGPLAN 2005
Conf. Programming Language Design and Implementation
(PLDI 2005), pages 213–223. ACM Press, June 2005.

[9] P. Godefroid, M. Levin, and D. Molnar. Active property
checking. In Proc. 8th ACM & IEEE Int’l Conf. Embedded
software (EMSOFT’08), pages 207–216. ACM Press, Oct.
2008.

[10] P. Godefroid, M. Levin, and D. Molnar. Automated whitebox
fuzz testing. In Proc. Network and Distributed System
Security Symp. (NDSS 2008), pages 151–166. The Internet
Society, Feb. 2008.

[11] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual, 2009.

[12] J. Kinder and H. Veith. Jakstab: A static analysis platform
for binaries. In 20th Int’l Conf. Computer Aided Verification
(CAV 2008), volume 5123 of LNCS, pages 423–427.
Springer, July 2008.

[13] T. Lengauer and R. Tarjan. A fast algorithm for finding
dominators in a flowgraph. ACM Trans. Program. Lang.
Syst., 1(1):121–141, 1979.

[14] D. Molnar, X. C. Li, and D. Wagner. Dynamic test
generation to find integer bugs in x86 binary linux programs.
In Proc. 18th USENIX Security Symp. USENIX Association,
Aug. 2009.

[15] D. Monniaux. The pitfalls of verifying floating-point
computations. ACM Trans. Program. Lang. Syst.,
30(3):1–41, May 2008.

[16] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. In Conf. Rec. POPL
2003: 29th SIGPLAN-SIGACT Symp. Principles of
Programming Languages, pages 128–139. ACM Press, Jan.
2002.

[17] S. K. Raman, V. M. Pentkovski, and J. Keshava.
Implementing streaming SIMD extensions on the Pentium III
processor. IEEE Micro, 20(4):47–57, 2000.

[18] A. Sabelfeld and A. C. Myers. Language-based
information-flow security. IEEE J. Sel. Areas Commun.,
21(1):5–19, Jan. 2003.

[19] P. Wolper. Expressing interesting properties of programs in
propositional temporal logic. In Conf. Rec. 13th Annu. ACM
Symp. Principles of Programming Languages (POPL 1986),
pages 184–192. ACM Press, Jan. 1986.

