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Abstract—The Android ecosystem has witnessed a surge in
malware, which not only puts mobile devices at risk but also
increases the burden on malware analysts assessing and catego-
rizing threats. In this paper, we show how to use machine learning
to automatically classify Android malware samples into families
with high accuracy, while observing only their runtime behavior.
We focus exclusively on dynamic analysis of runtime behavior
to provide a clean point of comparison that is dual to static
approaches. Specific challenges in the use of dynamic analysis
on Android are the limited information gained from tracking
low-level events and the imperfect coverage when testing apps,
e.g., due to inactive command and control servers. We observe
that on Android, pure system calls do not carry enough semantic
content for classification and instead rely on lightweight virtual
machine introspection to also reconstruct Android-level inter-
process communication. To address the sparsity of data resulting
from low coverage, we introduce a novel classification method
that fuses Support Vector Machines with Conformal Prediction
to generate high-accuracy prediction sets where the information
is insufficient to pinpoint a single family.

I. INTRODUCTION

The growth of malware for the Android mobile plat-
form increasingly requires highly scalable methods that can
quickly analyze and categorize applications. We can identify
two distinct problems: (i) malware detection—distinguishing
malicious from benign applications and (ii) malware clas-
sification—classifying malware samples into known families
of related malware. While the former immediately benefits
users, the latter is a crucial part of forensic analysis, threat
assessment, and mitigation planning. In this paper, we focus
on the latter—classification of malware into families. We
assume that the samples under analysis have been identified
as malicious or suspicious by other means.

Machine learning has been successfully applied to both
detection and classification. Typically, a classifier is trained on
a labeled dataset, using a set of features that describe syntactic
or semantic properties of the applications. The structure of
Android apps provides rich syntactic information like method
and package names, permissions, and configuration files. As
a result, statically derived features have allowed to detect and
classify Android applications with high accuracy [1, 5, 29].

However, there is evidence that with growing popularity
of static malware detection and analysis, Android malware
increasingly begins to adopt obfuscation and evasion tech-
niques that break static methods [23, 28]. The same trend has
already been witnessed on desktop malware where the use of
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runtime packers and other types of obfuscation has become
the norm. We therefore take the position that Android malware
analysis should increasingly focus on runtime behavior, which
is independent of any syntactic artifacts and is visible in
managed and native code alike. Intuitively, malware samples
with similar malicious behavior should be classed as being
in the same family. As of yet, it is unknown whether the
observation of runtime behavior of Android apps allows to
achieve classification results comparable to static analysis.

In this paper, we focus on classifying Android malware
into families using runtime behavior derived from system calls
observed during dynamic analysis. We exclusively focus on
dynamic analysis, to provide a point of comparison that is
completely dual to existing static approaches. We face three
main challenges specific to this setting: (i) to be resilient to
obfuscation and the use of native code, the dynamic analysis
should operate at the level of system calls where high-level
application semantics are obscured; (ii) malware samples may
fail to exhibit sufficient behavior for reliable classification, e.g.,
because of deactivated command and control infrastructure;
(iii) different malware families may exhibit characteristics that
are too similar for a classifier to pick up the differences.

We first address the problem of finding the right level of
abstraction and context for effective classification based on
system calls. In the desktop realm, system calls have been
used extensively to detect [20], classify [2], and cluster [15]
malware with high accuracy. Intuitively, system calls are well-
suited to characterize process behaviors on traditional desktop
operating systems [7], since they are required for external
effects. For Android, the situation is far from clear, because the
system call profile of Android apps is very different from that
of desktop applications. In particular, much of the Android-
specific behavior is exhibited through the same ioctl system
call that is dispatched to the Binder kernel driver, which
implements Android’s main mechanism for inter-process and
inter-component communication.

We therefore use a dynamic analysis framework for
Android that allows lightweight virtual machine introspec-
tion [25]. We generate features at different levels, includ-
ing pure system calls, decoded Binder communication, and
abstracted behavioral patterns. We feed this extracted data
into a Support Vector Machine [3] (SVM)-based multi-class
classifier. After the classifier has been trained on a training
set labeled with malware family names, it is able to classify
malware in the test set (new malware in an operational setting)
into families. We evaluate our approach on malware from
the Android Malware Genome Project [31] and the Drebin



dataset [1], which add up to 5,246 malware samples. Our
results show that parsing Binder invocations and abstracting
the raw system call data into high-level behaviors significantly
improves classification accuracy.

The second and third problems are due to observing
malware samples with sparse runtime behavior and selecting
features that map to multiple families, respectively. Both
problems lead to poor classification accuracy. In this paper,
we aim at providing a classification system that is robust for
even sparse runtime behavior. We consider improvements to
the behavior extraction and app stimulation to be an orthogonal
problem. We statistically evaluate the decisions made by the
SVM-based classifier and show that misclassifications are often
a consequence of SVM being forced to make a choice between
classes that were not well distinguishable during training. To
solve this issue, we suggest to use Conformal Prediction [27] to
improve the accuracy of SVM. Conformal Prediction allows
to predict a set of best matches instead of being forced to
decide on a single one, and it therefore can significantly
improve the accuracy in the presence of sparse behavior
profiles. In an operational setting, we automatically identify the
cases where the results for SVM appear statistically unreliable
and selectively invoke Conformal Prediction for an optimal
classification. Overall, the main contributions of this paper are:

• We present a framework and experimental results for
multi-class classification of the runtime behavior of
Android malware. To the best of our knowledge, this
is the first work to perform multi-class classifications
of Android malware using a purely dynamic approach.

• We use a statistical mechanism to evaluate classifica-
tion quality as proposed in [12] and show that single-
choice classification algorithms can be unreliable for
sparse behavior profiles.

• We introduce a new approach to refine SVM classifi-
cation by selectively applying Conformal Prediction to
compute sets of matches whenever the SVM classifier
does not achieve acceptable confidence. Our tunable
framework improves classification accuracy from 84%
to 94% even on sparse behavior profiles.

The remainder of the paper is organized as follows: We
begin with an overview of the system used for gathering
behavior profiles from Android applications (§II). We then
present three machine learning techniques for classifying be-
havior (§III) and evaluate them on our system (§IV). Finally,
we discuss limitations (§V), review related work (§VI), and
conclude (§VII).

II. TRACING ANDROID BEHAVIOR

In this section, we discuss how we generate the behavioral
data used for classification.

A. System Overview

DroidScribe uses CopperDroid [25] as its dynamic analysis
component, which runs apps in a sandbox, records system
calls and their arguments, and reconstructs high-level behavior.
CopperDroid provides full access to the arguments of all trans-
actions going through the Binder mechanism for inter-process

Fig. 1: System overview. Android malware is executed and
monitored in an emulator. High-level behaviors are extracted
from system call dependencies and Binder methods before be-
ing preprocessed and passed to the classifier and the predictor.
Classification decisions on the training dataset are evaluated
using Conformal Evaluation [12].

and inter-component communication [6]. The introspection is
lightweight, however, and designed to be directly applicable to
all Android OS versions without requiring any modifications
to the Android system.

Figure 1 gives an overview of DroidScribe and its dynamic
analysis and machine learning components (§III). Malware for
training the classifier is passed to CopperDroid for dynamic
analysis, which captures system calls and abstracts high-level
behaviors (details below). During the following preprocessing
stage, DroidScribe selects certain behaviors and processes
them for classification (see §III-A). It then assesses the clas-
sification accuracy, and, depending on the outcome, applies
Conformal Prediction (see §III-B) instead of SVM for selected
classes (see §III-C).

B. High-level Behavior Extraction

From the trace of system calls and arguments, Copper-
Droid reconstructs high-level behavior, which encompasses
both traditional OS operations (e.g., process creation, file
creation) and Android Binder-related methods (e.g., sending
SMS, IMEI access, Intent communications). The high-level
behaviors specific to Android are reconstructed through deep
inspection of Binder transactions, which appear as ioctl
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Feature Set Contained Details
S1 Network Access IP, port, and network traffic size
S2 File Access File name/type, name classes
S3 Binder Methods Method name and parameters
S4 Execute File File name/type, user permissions

TABLE I: Behavioral classes and details extracted by Copper-
Droid. A subset of this information is used as features for our
classification framework.

system calls. In addition, CopperDroid conflates sequences
of related and interdependent system calls to derive a single
high-level behavior, such as file system access or network
access. The classes of high-level behaviors include network
accesses, file accesses, Binder methods, and file execution (see
Table I). When multiple system calls are condensed into single
behaviors, the arguments and return values of the individual
calls are used to enrich the behaviors with additional details.

For classification, we use the classes of high-level behav-
iors currently generated by CopperDroid, several of which
represent a series of system calls. It is important to note
here that although CopperDroid reconstructs the arguments
for the high-level classes as well, we do not use them for
our classification. We do this to avoid overfitting our model
with fine-grained information about the arguments. Having
said that, we intend to devise more abstract and meaningful
representations of the arguments as a part of future work.
Details of the classes, numbered from S1 to S4, are:

S1: Network Access. Malware often establishes network
connections to external entities. Each network access behavior
represents a sequence of system calls, normally beginning with
connect, followed by occurrences of sendto. By correlat-
ing the parameters of these calls, the behavior is enriched with
the target IP address and the amount of transferred data.

S2: File Access. File access is reconstructed from system
calls using the same file descriptor. Each chain of dependent
system calls begins with a new file descriptor returned by
open, continues with calls like write, and terminates with a
call to close or unlink (related system calls, such as dup,
are considered part of the chain). Using these chains of system
calls, CopperDroid is able to fully recreate the actual file for
further analysis.

S3: Binder Methods. CopperDroid effectively reconstructs
Binder communications from the ioctl system calls. Since
Binder communications are the principal means of inter-
process/inter-component communication, they are the gateway
to services from the Android system and enable app-to-app
interactions. Consequently, monitoring Binder communications
and identifying the invoked method is crucial to modeling the
behavior of Android malware.

S4: Execute. There are various files that may be exe-
cuted within the Android system to run exploits or silently
install applications. We differentiate different file executions by
breaking down these behaviors by analyzing their parameters.
For example, if the parameters include a “pm” followed
eventually by an “install” and a file name, this is an indication
of an application being installed silently without the user’s
permission. Furthermore, there a multiple ways to execute the

same file, e.g., the same application installation can be done
with different arguments; grouping all of them into the same
class of behavior with the same outcome makes our method
less susceptible to misdirection.

In the remainder of the paper we refer to all four types as
high-level behaviors; in particular, with this term we always
include Binder methods.

III. CLASSIFICATION OF ANDROID MALWARE FAMILIES

We now present three approaches to malware classification.
We start with briefly recalling SVM (§III-A), and we explain
Conformal Prediction and how it can be used with metrics
based on SVM (§III-B). Finally, we present a hybrid approach
that combines the speed of SVM with the improved accuracy
of Conformal Prediction (§III-C).

A. Standard Classification

Support vector machines (SVM) [3] were initially in-
troduced for the two-class classification problem and later
extended for multi-class classification. Given a dataset of sam-
ples belonging to different classes, support vector machines
segregate the given samples using a hyperplane. A hyperplane
is the set of points x that satisfies the relation x ·w − b = 0.
Here, · denotes the dot product, w is the normal to the
hyperplane, and b

‖w‖ is offset of the hyperplane from the origin
along the normal.

1) Two-Class Support Vector Machines: A training dataset
D consists of a set of tuples (xi, yi), where xi is a p-
dimensional vector of real numbers and yi ∈ {−1,+1} denotes
the class. SVM then separates the two classes by constructing
the optimal hyperplane by subjecting w and b to the following
constraints for the two classes:

∀yi = +1 : xi ·w − b ≥ +1

∀yi = −1 : xi ·w − b ≤ −1

Complete segregation of the two classes is possible only when
the samples are linearly separable. If the samples are not, it is
possible to use other separation kernels such as polynomial or
radial basis function [17]. Once the hyperplane is established,
a decision for the classification of samples from the testing
dataset can be obtained by substituting xi for the test samples.
Since non-linear kernels are computationally expensive and do
not scale to the size of our experimental data, we used the
linear kernel.

2) Multi–Class Support Vector Machines: There are two
main approaches to extend two-class classification to the
multi-class case: the one-vs-all approach and the one-vs-one
approach. We briefly outline both methods; Hsu and Lin [11]
provide an in-depth comparison.

The one-vs-all approach constructs k SVMs for k classes
in the dataset—one per class. In particular, the j-th SVM dis-
tinguishes the j-th class from a combination of the remaining
k− 1 classes. Labeling samples in class j as +1 and all other
samples as -1 gives rise to k decision functions (one for each
SVM) of the form x ·w1 + b1, . . . ,x ·wk + bk. The class of
sample i is then chosen according to the decision criterion
classi = argmax j=1...k(xi · wj + bj) using the decision
functions derived from all k SVMs.
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In contrast, the one-vs-one approach constructs SVMs to
distinguish each possible pair of classes, i.e., k(k−1)/2 SVMs
for k classes [13, 8, 14]. After training, the testing is done
using a voting system. For each decision function for classes i
and j, denoted by x ·wij + bij , the sign of the result indicates
whether the samples belongs to i or j. If it belongs to i, then
the vote for i is increased by 1. Otherwise, the vote for j is
increased by 1. At the end of the voting across all k(k− 1)/2
decision functions, the sample is classified into the class with
the highest votes. For our experiments in this paper, we have
chosen to apply the one-vs-all approach as it is faster while
still giving a better notion of non-conformity scores, which
are a crucial part of our statistical classification framework
(see §III-B).

3) Classification of Behavior Profiles: Machine learning
algorithms normally require data to be presented as vectorial
data. Therefore, we must embed the behavioral profiles and
system calls from dynamic analysis into a vector space. We
construct one feature vector per sample using the overall set
of features observed across all samples (represented by S),
comprised of reconstructed behaviors. We build a 2D vector
space model of size (number of samples)×(|S|) which is used
as an input to the classifier.

Each malware sample x is mapped to the vector space
by constructing its feature vector f(x). The feature vector
is constructed by inserting the frequency of each behavioral
feature s ∈ S as observed for x. For a set of malware samples,
the mapping f can be formally defined as

f : X → {0, n}|S|, f(x)→ (I(x, s))s∈S ,

where the indicator function I(x, s) is defined as

I(x, s) =

{ ∑
i

[bi = s] number of instances s in x

0 otherwise

and bi corresponds to the ith behavior observed for sample x.

Therefore the importance, or significance, of a behavior in
a sample can be measured by the frequency of its occurrence.
For example, after the vector space has been normalized, a
frequency of 0 (i.e., f(x, s) = 0) shows that behavior has little
to no importance in identifying a sample because the sample
rarely exhibits the behavior. On the other hand, a behavior with
a non-zero feature frequency illustrates that it represents this
sample’s actions better than the previous one.

B. Classification by Conformal Prediction

In traditional classification, the algorithm must typically
choose a single class label per sample. It does not take into
account whether the best fit is actually a good fit, and it ignores
any alternate choices, regardless of their likelihood. If more
than one choice of similar high likelihood exists, a traditional
classification algorithm is prone to error.

To address these shortcomings, Conformal Prediction (CP)
was suggested as a technique to statistically assess how well
a sample fits into a family [27]. For the qualitative scoring,
CP takes a non-conformity score as input. The non-conformity
score is a geometric measure of how well a sample fits into a
class; e.g., in the case of SVM, this could be derived from the
sample’s distance to the segregating hyperplane, with samples

closer to the hyperplane being less conforming. CP converts
this geometric distance to p-values, which are a statistical
measure of how well a sample fits into a class. This mapping
from geometric to statistical space lends CP its flexibility: the
user can specify how accurate they want CP to be.

The non-conformity score is typically a real-valued func-
tion A(B, z) which measures how different a sample z is from
samples of class B. It is used to derive p-values, the proportion
of samples in a class with identical, or higher, non-conformity
scores. When the p-values for all classes of a sample are
written out in descending order, introducing a cut-off level
(ρ) selects a potential set of classes (P) to which the sample
may belong. All other classes (P ′) having p-values less than
ρ are treated as rejected options for classification.

CP can give qualitative assessments of how good a predic-
tion set P identifies a given sample. The first assessment metric
is credibility, which measures the highest p-value among
classes in P . A high credibility score indicates that CP found
good matches for the sample and it is unlikely to hail from a
new family. The other qualitative metric that CP provides for
a prediction set is confidence. The confidence level is defined
as 1− p, where p is the highest p-value for classes in P ′ that
were filtered out by the cut-off ρ.

As discussed by Jordaney et al. [12], one can interpret the
quality of classification by analyzing credibility and confidence
scores. For example, if the CP choices have high credibility
but the decision has a poor confidence, it implies that other
classification options are available and that they have a p-value
closer to the chosen options. In such a case, it means that
one may need to reconsider either the algorithm or the set of
features in order to better discriminate between classes. Also
when considering the right set of features, this information
could be extremely valuable for security analysts in those cases
where two families are related to each other and/or behave
alike. Alternatively, if both the credibility and confidence are
poor, it demonstrates that the sample does not match any
known family and may belong to a new malware family (i.e.,
zero-day malware).

Another interesting aspect to Conformal Prediction is that
the confidence level can be used to obtain a set of predictions,
in which case the error rate is (1− confidence). If we implicitly
set a confidence threshold or a p-value threshold, we can obtain
a set of predicted classes that a sample may belong to. This
makes CP a highly desirable proposition: one can always tune
p-value thresholds in a bid to achieve perfect classification. The
price to be paid is that one must choose the most appropriate
option by other means when the p-value threshold returns
multiple classes. While this may require manual effort, it
obviates the need to consider all classes and allows to focus
on the few selected by Conformal Prediction. Furthermore, one
can reduce or increase the number of classes by changing the
p-value threshold based on the desired accuracy level.

SVM also provides probabilities of a sample mapping to
a class, and these have been used in the past to detect new
malware families [20]. However, the derivation of probabilities
is based on Platt’s scaling [18], which is a form of logistic re-
gression. Much like other regression techniques, it is sensitive
to outliers. It has been shown that the accuracy prediction can
be too optimistic or too pessimistic if the probabilities are used
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to predict the accuracy—as is done in the case of Conformal
Prediction with the confidence threshold [30]. This is because
Platt’s scaling uses a transformation of the dataset conducted
by SVM, whereas CP creates its own transformation based on
the actual dataset.

In DroidScribe, we use Conformal Prediction in the follow-
ing manner. For each sample s that needs to be classified and
for each class C in the training set, the Conformal Prediction
trains by including s in the training set as a member of C.
Using this procedure, it obtains the distance of all samples
in C (including s) to all the hyperplanes bounding C. These
distances are then used as the non-conformity measure for the
calculation of p-values as described above. For a given s, this
sequence of actions is then repeated by putting s in all classes
in the dataset and retraining. Thereby, we obtain a p-value for
all classes with s as the test case. The prediction set for s
is then the set of classes that are retained after filtering out
classes having a p-value lower than the cut-off thresholds.

C. Hybrid Prediction: CP Augmenting SVM

With a flexible confidence level (spanning to 100% with
larger prediction sets), CP is a highly desirable algorithm for
classifying malware, but generally expensive. For each sample,
CP tries to place it in every possible class and computes the
non-conformity measure for the sample-class pair by running
a standard classification algorithm. To this end, for n samples
in a dataset and c possible classes, CP runs a traditional
classification algorithm (n × c) times to obtain the non-
conformity measures for all samples for all classes. We use
distances from the SVM hyperplane obtained from a one-
vs-one multi-class SVM (see previous section) as our non-
conformity score. Therefore, in a naive implementation, CP
would run the SVM classification (n × c) times in our case
which can be prohibitively expensive for large datasets.

Because of the high cost, we propose to combine CP
with SVM and to rely on CP only selectively to improve
the accuracy of a standard classification algorithm. We invoke
CP only when it is necessary and when SVM does not
meet a desired classification quality metric. Interestingly, the
classification quality metric for SVM in our case is derived
from evaluating SVM decisions with CP itself. This is where
the flexibility of the CP comes into play. P-values not only help
in classification, but also help evaluate existing classifications
by other algorithms.

The non-conformity measure of a sample, with respect to
a class, is used as an input to calculate the p-values. If we use
the same non-conformity measure for CP as for SVM (i.e., the
distance to hyperplane), we can verify whether the decision
taken by SVM was reliable. If the decision was unreliable,
the class chosen by SVM should have low p-value compared
to others. Hence, confidence (refer to §III-B) for the SVM
decision would be low. During initial training and testing,
we evaluate SVM decisions with CP and obtain the average
confidence for the true positives for each class. We call this the
class-level confidence. If a new sample is classified to be in a
class that has high class-level confidence during training with
SVM, we decide not to refer to the CP for further refinement.

To benchmark class-level confidence scores and use them
as a quality metric for invoking the Conformal Prediction, we

define a quality threshold as the cutoff in class-level confidence
below which we invoke CP. The cutoff works in practice in
the following manner: if SVM maps a test sample to any class
whose class-level confidence score during training is below
a chosen quality threshold, we invoke Conformal Prediction.
We call the classes below the quality threshold BQL classes
(short for below-quality threshold). While the quality threshold
is highly flexible and can be tuned to trade accuracy against
performance, for our experiments we used the median of class-
level confidence scores for all classes as the quality threshold.

An overview of our approach is shown in Figure 1. As dis-
cussed above, we first evaluate the confidence of SVM on the
training set using CP as an evaluation framework. By running
SVM on the training and testing (TT) set, we obtain a measure
of class-level confidence for the right decisions. The class-level
confidence for the right decisions is the average confidence
of all samples that were rightly classified during testing. It
is a measure on how much we can rely on the hyperplanes
that SVM constructs. A poor-class level confidence implies an
imprecise segregation of classes.

If the SVM decision for a new sample maps it to a class
that does not meet our quality metric, then the SVM decision
is deemed unreliable. In such a case, the CP is invoked and
a p-value threshold (or, a confidence level) is provided to CP
to determine all possible classes that pass that threshold. By
expanding our prediction set with a few top choices returned
by the CP, we achieve a better classification accuracy and both
fewer false positives and false negatives. For our experiments
we use a range of p-value thresholds to demonstrate the
seamless relationship between size of the prediction set and
the classification accuracy.

IV. EVALUATION

In this section, we experimentally confirm the choices made
in designing DroidScribe and evaluate the overall system. We
first introduce our experimental setup and the metrics used
(§IV-A) before purely evaluating the SVM-based classifier
(§IV-B). We then describe our methodology to identify the
minimum number of samples in a class so that CP can reliably
improve SVM decisions (§IV-C). Finally, we evaluate the
hybrid predictor and show that it can achieve near-perfect
accuracy by trading off the size of the prediction set (§IV-D).

A. Setup

The work presented in this paper is largely based on a siz-
able dataset of real-world Android OS malware samples. The
dataset was originally collected, characterized, and discussed
by Zhou and Jiang [31] and later extended by Arp et al. into
the Drebin dataset [1]. It consists of 5,560 samples from which
we extract features for 5,246. For the remaining 314 samples,
we found that most were not valid APK files and we were
unable to run them even in an off-the-shelf Android hardware
device (for a discussion of limitations, see §V).

For measuring the classification quality, we use the notion
of true positives (TP), false positives (FP), false negatives
(FN), precision, and recall for multi-class classification, as
discussed by Sokolova and Lapalme [22]. Note that for multi-
class classification, accuracy is equivalent to recall, and we
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(a) Accuracy (b) Runtime

Fig. 2: (a) Classification accuracy (recall) across SVM modes,
and (b) runtime for feature vector extraction (Ext) and classi-
fication (SVM).

Mode Features # Features
sys system calls only 110

rec b sys + Binder 251
rec b+ rec b + high-level 254

TABLE II: Operational modes for the classifier, the types of
features considered and the total number of features.

will use both terms interchangeably. Precision p and recall r
are defined per class. For each class i, we have

pi =
TP i

TP i + FP i
and ri =

TP i

TP i + FN i

where TP i represents the number of samples in class i that
were correctly classified; FP i is the number of samples incor-
rectly classified into class i; and FN i is the number of samples
from i classified into other classes. Hence, TP i + FNi is the
total number of samples in class i in the ground truth. When
reporting the results of multi-class classification experiments,
we compute the average precision and recall across all samples.

B. SVM-based Classification

In our first set of experiments, we use SVM for multi-
class classification (see §III-A). In particular, we aim at eval-
uating the effect on the resulting accuracy after applying a
number of operational modes that represent behaviors with
different granularity (see Table II). We begin by establishing
a baseline with a configuration that uses raw system calls
(sys) before reconstructing Binder communication (rec b) and
then Binder communication and other system call-based high-
level behaviors (rec b+) (see II-B). We report the accuracy
for each configuration in Figure 2a and runtime results for
SVM in Figure 2b. The relative small number of samples
in some classes prevent us from using a three-way split
validation set. Instead, we used a leave-k-out cross-validation
which has been widely used with unbalanced datasets in the
past [19]. Specifically, the experimental results were obtained
after 20-fold cross-validation after using random sampling and
averaging the results over the 20 folds. We also removed all
samples belonging to families with fewer than 20 samples to
avoid having folds without samples, which left us with 4,533
samples.

1) System Call-Only Baseline: As the simplest configu-
ration for multi-class SVM classification we use frequencies
derived from basic system calls (sys in Table II). Overall, Cop-
perDroid collects 205 types of system calls. This configuration
achieved 72% accuracy, which we use as a baseline for our
subsequent experiments.

2) High-Level Behaviors: Intuitively, abstracting low-level
system calls to high-level should be able to reduce noise and
improve accuracy. To experimentally validate this intuition
and to determine the right level of abstraction, we enriched
the system call data by introducing high-level behaviors.
While the first configuration for high-level behaviors uses
semantically rich binder transactions as features (rec b) the
second configurations also includes file system or network
accesses (see §II-B) as features (rec b+). System calls that are
abstracted to high-level behavior are discarded from the trace.
From Figure 2a it is apparent that using high-level behaviors
significantly improves accuracy (84% for rec b+).

C. Tuning Conformal Prediction

In order to use CP we need to compute p-values for our
base case for all samples. However, it is important to note that
the Conformal Prediction is based on statistics rather than on
geometrical distances; therefore, the number of samples in a
class has a direct bearing on the accuracy of the predictor.

For a class c with cardinality n and a new sample s, the p-
value is the fraction of samples in c that have weaker presence
of c’s than s. If a sample s does not belong to c, then all
samples in c will have stronger footprints of the properties of
c and their p-value would be 1

n+1 . Each p-value is computed
after adding the new sample to the class. Therefore, p-values
are sensitive to the cardinality of the class. For a class that
has only one sample, the p-value for a new dissimilar sample
would be 0.5 ( 1

1+1 ). On the other hand, if the cardinality is
9, the p-value for a new sample would be 0.1 ( 1

9+1 ). This
skews the comparison across classes in terms of p-values. If
the new sample is dissimilar to both the classes, the Conformal
Prediction shows a propensity towards picking the class with
fewer samples because a lower cardinality has a higher p-value.
Therefore, for our experiments, we filter out all families with
fewer than 20 samples before applying the hybrid prediction
scheme. This corresponds to a minimum p-value of 0.05 and is
a reasonable level of granularity to apply Conformal Prediction
without skewing the choice families for a sample.

D. Hybrid Prediction

In this section we demonstrate how Conformal Prediction
can, together with SVM, provide a highly flexible framework
to achieve high accuracy even when dealing with sparse
behavior profiles (e.g., due to common code-coverage issues
in dynamic analysis). We gave an overview of our framework
in §III-C. The key idea in this framework is to use Conformal
Prediction to emit a set of predictions for classifying a sample
instead of a single predictions. However, CP is computationally
expensive, so we apply it selectively to maintain efficiency.
Only where the SVM decisions are expected to be of poor
quality, we invoke CP during classification.

We present experiments that illustrate how DroidScribe
uses the hybrid framework functions in an operational setting.
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We first evaluate SVM with Conformal Prediction anddeter-
mine that the decisions of SVM can be prone to errors. Then
we show how invoking the Conformal Prediction can help
correct such errors committed by SVM.

1) Quality Threshold: The decisions of the SVM are not
always reliable. As discussed in Section III-C, we evaluate
SVM using CP and plot the distribution of confidence per
class for correct SVM decisions (Figure 3), with a sample
threshold of 20. The correct classifications for samples in Adrd,
DroidKungFu4 and DroidDream, for example, show lower
confidence during training. The samples in these classes cannot
be easily distinguished from others and SVM is forced to pick
a class. Therefore, 3, Adrd, Boxer and Jifake are examples
of “below-quality threshold” or BQL classes as described in
§III-C. Whenever a test sample is mapped one of these BQL
classes, CP is used to minimize misclassifications.

2) Tuning CP Towards Perfect Accuracy: A key advantage
of CP over SVM is that for a desired confidence score, it can
provide a set of top choices such that each sample falls into one
of the classes in the set with the desired confidence. Therefore,
the desired confidence score is the most important factor in
determining how much CP can improve the decisions of SVM.
The confidence score has a bearing on the size of prediction set
for a classification decision using SVM and larger prediction
sets lead to improvements in precision and recall.

We now evaluate how our classifier trades off accuracy
against prediction set size. In our experiments, for every CP
invocation, we invoke CP with a set of desired confidence
scores and observe how accuracy improves as a function
of the prediction set size. Figure 4 shows how (i) recall,
(ii) overall precision, and (iii) prediction set size change for
BQL classes as the confidence level is varied from 0.50 to 1.00
(the maximum possible) in step sizes of 0.05. Note that the
overall precision is the same as the overall recall and overall
accuracy as we are dealing with multi-class classification.
The recall/accuracy for samples mapping to BQL classes (left
axis) steadily improves from 91% to 100% as the desired
confidence-level is increased from 0.90 to 1.00. The overall
precision for classification improves as classification decisions
for samples mapping to BQL classes are improved through CP
and grows steadily from the baseline SVM accuracy of 84% to
94%. The prediction set size also increases (right axis) as the
desired confidence levels are increased. It increases steadily
for the confidence range of 0.50 to 0.95 (corresponding p-
value thresholds of 0.50 down to 0.05). Beyond this, however,
it increases rapidly even though the gains in overall precision
are modest. For a confidence level of 1.00, which gives us
a perfect classification for samples mapping to BQL classes,
we have to consider all classes in the dataset even though
the gain in overall precision is only 2%. With Conformal
Prediction, however, the trade-off between prediction set size
and improvement in classification accuracy is seamless. This
trade-off can be swung one way or another using the desired
confidence level as a parameter which makes DroidScribe a
highly tunable system.

3) Analysis of Individual Classes: While Figure 4 shows
the improvement in recall for samples mapping to BQL classes
when Conformal Predictionis invoked, the responses for in-
dividual classes are quite different from the overall picture.
In Figure 5, we show how accuracies for individual classes
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Fig. 3: Confidence of correct SVM decisions for all families
with more than 20 samples. The box plot displays the distribu-
tion of confidence values per family; circles denote the average
confidence; boxes delineate the interquartile range; the segment
inside the box shows the median; and the whiskers show the
maximum and minimum values and delimit the outliers.
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Fig. 4: Recall and precision vs. size of prediction set for p-
value cut-offs of 0.50 through 0.00 in steps of -0.05. All classes
with fewer than 20 samples are filtered out. At a confidence
level of 0.95, the overall precision is 92%; recall for the BQL
classes is 96%, and the average size of the prediction set is 9.

change as a function of the confidence level. For the sake of
brevity, we only discuss the recall for the classes here.

The recall for samples mapping to Adrd increases rapidly as
the desired confidence level is increased as shown in Figure 5a.
For predictions that map to Adrd, we can increase the accuracy
from 64% to 93% just by considering an additional three
classes (from five classes considered at 64% to eight classes
considered at 93%). This is just a subset of the entire set of 23
classes, significantly reducing the burden on a human analyst.
In order to correctly classify misclassified samples, the human
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analyst would have had to consider all 23 classes. However,
with the use of Conformal Prediction, this set is reduced to a
small fraction of the original set. This demonstrates the robust
statistical foundations of CP; it picks only the top matching
classes and does not unnecessarily increase the prediction set
size. Beyond confidence level of 0.95, however, the size of the
prediction set increases rapidly because a small proportion of
samples does not exhibit any meaningful behavior to help CP
identify top classification choices.

The improvement in recall for DroidDream follows a
similar steady increase in recall (as shown in Figure 5b) when
the desired confidence-levels are increased. However, there is a
marked jump in recall from 68% to 83% when the confidence
is increased from a confidence-level of 0.7 (p-value threshold
of 0.3) to a confidence level of 0.75 (p-value threshold of 0.25).
This jump is likely due to the conformal predictor showing a
propensity to picking the correct classes for many samples at
those specific confidence levels. Once again, it can be seen
that beyond a certain limit (confidence levels of 0.95), it is
difficult to boost the recall without considering excessively
many classes; even minor improvements in recall require us to
consider almost the entire set of classes.

The correlation between the prediction set size and the
recall achieved is best demonstrated by DroidKungFu samples
as shown in Figure 5c. Improvements in recall go hand in hand
with the increases in prediction set sizes at all confidence-
levels and the recall also improves at a rapid rate as the
confidence-levels approach 1.0. This is indicative of the fact
that we are unable to pick top matching choices for this class
at low-level of confidence thresholds. A likely reason for this
could be that we do not see enough behavioral evidence from
this sample and that our dynamic analysis needs to be further
improved. Another reason could be that we do not pick the
right discriminating features for this class of samples or that
the two misclassified families behave similarly.

The key takeaway from the above discussion shows that
choosing the right confidence level for CP is crucial to effec-
tively improve decisions of standard classification algorithms
such as SVM. For our dataset, we were able to achieve
considerable improvements in precision and recall between
confidence levels of 0.50 and 0.95, where the size of the
prediction set ranges from 4 to 9 classes. Beyond this point,
the size of the prediction set increases rapidly and, depending
on the domain, may outweigh the improvements in recall.

This points to the main advantage of the our hybrid classi-
fication approach: with the confidence parameter, DroidScribe
allows the user to achieve any desired level of accuracy, at the
price of increasing the prediction set size. An example of a
setting where the desired confidence level would be high could
be a semi-automatic deployment where DroidScribe is used for
initial classification of malware. A human analyst may be able
to easily disambiguate multiple matches in a larger prediction
set, but could be distracted by a misclassification.

V. LIMITATIONS

As our classification is built on CopperDroid’s extracted
behaviors, our methods inherit the framework’s limitations.
For instance, as CopperDroid dynamically executes apps in an
emulated environment, only one execution path is traversed per

run. Furthermore, malware can fingerprint emulators and vir-
tualized environments to evade the monitoring systems. Split
personality malware, such as Dendroid and Android.HeHe, are
capable of detecting emulated environments with a variety of
tests (e.g., the IMEI is set to all zeros on a vanilla Android
emulator). In such cases, these specimens will only exhibit
benign behaviors, avoiding detection and/or possibly bypass-
ing a screening test for an application market. Furthermore,
resources (e.g., a specific network end point) may not be
available at the time of the analysis. The issue of code coverage
is partially addressed by CopperDroid, which uses a simple
triggering mechanism to try and stimulate more behaviors.
While this has shown an improvement in observed behaviors,
dynamic code coverage is still an open problem.

As we are analyzing a stream of system calls, our method
might also be vulnerable to mimicry attacks and, in some
aspects, randomly added system calls and actions that change
the patters in system calls. However, as we rely on behaviors,
we are only considering subsets of system calls that cause
actual visible change in the Android system. Mimicry attacks
decrease the precision of host-based anomaly detection sys-
tems by injecting spurious system calls. While our behaviors
can also be subject to this attack, this would occur at a higher
level of abstraction with visible side effects such as creating a
random file. Injecting system calls that correspond to a random
high level behavior thus becomes more visible than injecting
random sequences of behavior-preserving system calls.

The effectiveness of classification techniques to identify
new, previously-unseen, families remains to be tested. Prob-
abilities [20] may introduce bias particularly when multiple
classes are considered. Conversely, quality metrics derived
from statistics [12] seem to offer insights into stages where
machine learning tasks start decaying (e.g., low p-value when a
sample x is erroneously classified as belonging to the class y).
This may provide evidence in support of the identification of
previously-unseen families, which we are currently exploring
as part of our ongoing research effort in this direction.

VI. RELATED WORK

Several approaches for automatically detecting or classi-
fying malware have been presented in the literature, which
typically use static and/or dynamic analysis to extract features
from the application under analysis. Once these features are
extracted, several techniques can assist the analyst in detecting
and classifying the malware, including machine learning [10],
data mining [26], expert systems [21], and clustering [4].
Many techniques were first introduced for malware on desktop
systems, but for the sake of brevity, we shall focus on the most
closely related work only.

Malware Detection. While we do not address malware detec-
tion in this paper, the techniques for detection and classification
are fundamentally related. Machine learning-based approaches
for malware detection use binary classification to determine
whether a sample is benign or malicious. Drebin [1] uses static
analysis to gather features such as permissions, APIs calls, and
network addresses declared in clear text and performs binary
classification using a linear SVM. Marvin [16] combines static
features with additional dynamic features and again uses linear
SVMs for binary classification. Ultimately, Marvin aims at
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Fig. 5: Family-level breakdown of correlation between recall and prediction set size.

returning a risk score for unknown samples. In this case,
the combination of static and dynamic analysis improves
the detection rate and reduces the number of false positives
compared to Drebin [1].

Family Classification. Classifying malicious code into fami-
lies of related malware is an important step in forensic analysis
and threat assessment. It allows analysts to identify malware
that is coming from the same source and likely follows similar
malicious intents.

Early approaches to classification such as DroidLegacy [5]
rely on signature matching to identify malware families. Re-
cent approaches enrich syntactic information with aspects of
the program semantics, e.g., program dependency graphs and
control flow graphs, to be resilient to some types of obfusca-
tion [29, 24]. DroidSIFT [29] builds dependency graphs for
API methods invoked by the app; the graphs are analyzed for
similarity with known graphs and then encoded into feature
vectors to uncover anomalies and identify families.

Dendroid [24] proposed to use text mining to automat-
ically classify malware samples and analyze families based
on control flow structures. RevealDroid [9] uses information
flow analysis and sensitive API flow tracking built on top
of two machine learning classifiers (C4.5 and 1NN). While
RevealDroid’s static analysis is shown to be resilient against
basic obfuscation schemes, it suffers from the same limita-
tions as the other static approaches against more advanced
schemes [23, 28].

In contrast to static analysis, dynamic analysis promises
to be resilient against such obfuscation schemes. While dy-
namic analysis has shown to improve accuracy of malware
detection [16], we presented the first dynamic approach to
multi-class malware classification on Android. For traditional
desktop malware, Bailey et al. [2] proposed a framework to
capture effects of system calls, e.g., modified files, network
connections made, or changes to the Windows registry. Rieck
et al. [20] discussed classification of malware on desktop
platforms using SVMs and similar types of dynamic behavior.
Similar to our approach, their work uses confidence intervals
to express the quality of the fit. However, DroidScribe is more
sensitive to outliers as it uses a non-conformity score and
reports better accuracy as discussed in §III-B.

Adapting techniques for malware on desktop environments
is not straightforward. Apart from the different types of system
calls seen on Android (in particular the Binder ioctl calls),
Android malware typically lacks any discernible propagation
behavior. Thus, the existing feature engineering is not directly
transferable to the family classification setting on Android. In
this regard, DroidScribe is the first work engineering dynamic
features at different abstraction layers of Android, i.e., system
calls, binder IPCs, and high level behaviors.

VII. CONCLUSION

We demonstrated how to accurately classify Android mal-
ware into families using a purely dynamic approach, thus
providing a point of reference for other static or hybrid
approaches. We showed that the level of abstraction at which
the runtime behavior of Android malware is observed affects
the quality of classification. On one hand, the additional
detail from reconstructing Binder calls and arguments clearly
improves accuracy. On the other hand, aggregating high-level
operations such as file system and network accesses reduces
noise and similarly improves the achievable results. Overall,
we were able to improve the classification accuracy of our
SVM classifier from 72% to 84%.

We further used Conformal Prediction as an evaluation
framework for our SVM-based classification approach. We
demonstrated that datasets with sparse behavioral profiles can
lead to error-prone low-confidence classification choices since
the classifier lacks the data to disambiguate similar families.
In response, we showed how predicting sets of choices using
Conformal Prediction leads to an improvement in precision and
recall when a sample’s mapping to the possible classes was
poorly differentiated during the training phase. We proposed
a hybrid prediction technique that improves low-confidence
SVM decisions using Conformal Prediction and improves the
classification accuracy from 84% to 94%.

ACKNOWLEDGMENTS

This research has been partially supported by the UK
EPSRC grant EP/L022710/1 and by a generous donation from
Intel Security (McAfee Labs). We are equally thankful to
Roberto Jordaney, the anonymous reviewers, and our shepherd

9



Drew Davidson for their invaluable inputs, comments, and
suggestions to improve the paper.

REFERENCES

[1] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and
K. Rieck, “Drebin: Effective and explainable detection
of Android malware in your pocket,” in Network and
Distributed System Security Symposium, NDSS, 2014.

[2] M. Bailey, J. Oberheide, J. Andersen, Z. Mao, F. Ja-
hanian, and J. Nazario, “Automated classification and
analysis of Internet malware,” in Research in Attacks,
Intrusions and Defenses, RAID, 2007.

[3] C. Cortes and V. Vapnik, “Support-vector networks,”
Machine Learning, vol. 20, 1995.

[4] S. J. Delany, M. Buckley, and D. Greene, “Sms spam
filtering: methods and data,” Expert Systems with Appli-
cations, vol. 39, no. 10, pp. 9899–9908, 2012.

[5] L. Deshotels, V. Notani, and A. Lakhotia, “DroidLegacy:
Automated familial classification of Android malware,”
in ACM SIGPLAN Program Protection and Reverse En-
gineering Workshop, PPREW, 2014.

[6] W. Enck, M. Ongtang, and P. McDaniel, “Understanding
Android security,” IEEE Security Privacy, vol. 7, 2009.

[7] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff, “A sense of self for Unix processes,” in IEEE
Symposium on Security and Privacy, 1996.

[8] J. Friedman, “Another approach to polychotomous clas-
sification,” Technical report, Department of Statistics,
Stanford University, Tech. Rep., 1996.

[9] J. Garcia, M. Hammad, B. Pedrood, A. Bagheri-Khaligh,
and S. Malek, “Obfuscation-resilient, efficient, and accu-
rate detection and family identification of android mal-
ware,” Department of Computer Science, George Mason
University, Tech. Rep., 2015.

[10] Y.-T. Hou, Y. Chang, T. Chen, C.-S. Laih, and C.-M.
Chen, “Malicious web content detection by machine
learning,” Expert Systems with Applications, vol. 37,
no. 1, pp. 55–60, 2010.

[11] C.-W. Hsu and C.-J. Lin, “A comparison of methods
for multiclass support vector machines,” IEEE Neural
Networks, vol. 13, 2002.

[12] R. Jordaney, Z. Wang, D. Papini, I. Nouretdinov, and
L. Cavallaro, “Misleading metrics: On evaluating ma-
chine learning for malware with confidence,” http://goo.
gl/u2XwTD, Royal Holloway, University of London,
Tech. Rep., 2016.

[13] S. Knerr, L. Personnaz, and G. Dreyfus, “Single-layer
learning revisited: a stepwise procedure for building and
training a neural network,” in Neurocomputing. Springer,
1990, vol. 68.

[14] U. Kreßel, “Pairwise classification and support vector
machines,” in Advances in kernel methods. MIT Press,
1999.

[15] C. Kruegel, E. Kirda, P. M. Comparetti, U. Bayer,
and C. Hlauschek, “Scalable, behavior-based malware
clustering,” in Network and Distributed System Security
Symposium, NDSS, 2009.

[16] M. Lindorfer, M. Neugschwandtner, and C. Platzer, “Mar-
vin: Efficient and comprehensive mobile app classifica-
tion through static and dynamic analysis,” in Proceedings

of the 39th Annual International Computers, Software &
Applications Conference, vol. 2, July 2015, pp. 422–433.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Machine
Learning Research, 2011.

[18] J. C. Platt, “Probabilistic outputs for support vector ma-
chines and comparisons to regularized likelihood meth-
ods,” in Large Margin Classifiers. MIT Press, 1999.

[19] P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-validation,”
in Encyclopedia of database systems. Springer, 2009,
pp. 532–538.

[20] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov,
“Learning and classification of malware behavior,” in
Detection of Intrusions and Malware & Vulnerability
Assessment, DIMVA, 2008.

[21] S. Sahin, M. R. Tolun, and R. Hassanpour, “Hybrid
expert systems: A survey of current approaches and
applications,” Expert Systems with Applications, vol. 39,
no. 4, pp. 4609–4617, 2012.

[22] M. Sokolova and G. Lapalme, “A systematic analysis of
performance measures for classification tasks,” Informa-
tion Processing and Management, 2009.

[23] G. Suarez-Tangil, J. E. Tapiador, and P. Peris-Lopez,
“Stegomalware: Playing hide and seek with mali-
cious components in smartphone apps,” in International
Conference on Information Security and Cryptology.
Springer, December 2014, pp. 496–515.

[24] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and
J. Blasco, “Dendroid: A text mining approach to analyz-
ing and classifying code structures in android malware
families,” Expert Systems with Applications, vol. 41,
no. 1, pp. 1104–1117, 2014.

[25] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Cop-
perDroid: Automatic reconstruction of Android malware
behaviors,” in Network and Distributed System Security
Symposium, NDSS, 2015.

[26] S. Thiruvadi and S. C. Patel, “Survey of data-mining
techniques used in fraud detection and prevention,” In-
formation Technology, vol. 10, no. 4, pp. 710–716, 2011.

[27] A. G. V. Vovk and G. Shafer, Algorithmic learning in a
random world. Springer-Verlag New York, Inc., 2005.

[28] W. Yang, Y. Zhang, J. Li, J. Shu, B. Li, W. Hu, and D. Gu,
“Appspear: Bytecode decrypting and dex reassembling
for packed android malware,” in Research in Attacks,
Intrusions, and Defenses. Springer, 2015, pp. 359–381.

[29] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-
aware Android malware classification using weighted
contextual API dependency graphs,” in ACM SIGSAC
Computer and Communications Security, CCS, 2014.

[30] C. Zhou, I. Nouretdinov, Z. Luo, D. Adamskiy, L. Ran-
dell, N. Coldham, and A. Gammerman, “A comparison
of venn machine with Platt’s method in probabilistic
outputs,” in Artificial Intelligence Applications and In-
novations (AIAI), 2011.

[31] Y. Zhou and X. Jiang, “Dissecting Android malware:
Characterization and evolution,” in IEEE Symposium on
Security and Privacy, 2012.

10


