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Abstract—In mixed-language applications, where Rust is com-
bined with C/C++ code, vulnerabilities in C/C++ can undermine
Rust’s memory-safety guarantees and can lead to faults that arise
even in safe Rust code. Memory-safety sanitizers can be applied
to both languages during compilation and linking to produce
an application with whole-program memory-safety. However,
memory-safety sanitizers introduce a significant performance
penalty. We present SafeFFI, an approach to reduce performance
overhead of sanitizers by eliding checks. The main contribution
is a concept and implementation to translate memory-safety
information between the static memory-safety enforcement mech-
anisms of the Rust compiler and the dynamic run-time checks of
the sanitizer. Results show that we can significantly reduce the
sanitizer’s overhead while maintaining whole-program memory
safety.

I. INTRODUCTION

Rust is a modern programming language that offers signifi-
cant advantages for system software development, especially
regarding memory safety. However, adopting a new program-
ming language can only happen gradually, replacing a large
amount of existing legacy code step by step. This is why
today, we see the combination of C/C++ code and Rust
within the same address space in projects that use Rust’s
Foreign Function Interface (FFI) (see Figure 1). However,
memory-management faults in C/C++ can cause memory-
safety violations, like Buffer-Overflow or Double-Free, even in
safe Rust code [1]. Compiler-based memory-safety sanitizers
can help securing Mixed-Language Applications (MLAs). But
the additional instructions that the sanitizers introduce to
guarantee memory-safety can have a significantly negative
performance impact. These additional sanitizer instructions are
necessary for securing unsafe Rust code and C/C++ code but
bring no additional benefit to those Rust code parts that are
already proven to be safe by the Rust compiler.

In this paper, we present SafeFFI, a concept and imple-
mentation to optimize away unnecessary sanitizer instructions
to improve the performance of sanitized mixed-language code
while still maintaining the memory-safety guarantees of Rust’s
type system. We modified the Rust compiler and the under-
lying LLVM framework to implement a compatibility layer
between the memory-safety information available in Rust’s
type system and the representation of memory-safety metadata
in LLVM’s sanitizers. We adapted two existing memory-safety
sanitizers—SoftBound/CETS [2] and the Hardware-assisted
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Fig. 1. Building mixed-language applications with C/C++ and Rust can lead
to vulnerabilities

AddressSanitizer (HWASAN)—to utilize SafeFFI to sanitize
only necessary parts of ML As that consist of Rust and C code.

II. BACKGROUND

Rust statically guarantees memory safety for accessing the
following pointer types that we will refer to as safe pointers:
o &T: a shared, immutable reference to a stack object
e &mut T: an exclusive, mutable reference to a stack
object
e« Box<T> a pointer to a heap object
e [T; NJ: a static array with size known at compile-time
« pointers to functions, closures etc.
For dereferencing safe pointers, Rust’s type system guarantees
the following memory-safety properties:
1) Dereferencing only accesses memory within the bounds
of the pointed-to object (spatial safety).
2) The accessed object is always valid, i.e., allocated and
not yet freed (temporal safety).
However, the only pointer type that can be passed between
Rust and C is the raw pointer type (xmut T or xconst T)
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Fig. 2. SafeFFI’s modular architecture allows to use different memory-safety
sanitizers for different use cases

because its binary layout resembles a C pointer. Rust gives no
guarantees for dereferencing those raw pointers, which why
this is only allowed in code blocks marked with the unsafe
keyword.

III. APPROACH AND ARCHITECTURE

Our approach aims to utilize Rust’s existing static com-
piler checks to guarantee memory safety for accessing safe
pointers and using dynamic run-time checks of the sanitizer
to guarantee memory safety for raw pointers. Thereby, perfor-
mance overhead for instrumenting safe pointer accesses can
be avoided.

For exchanging data between Rust and C, developers have
to cast safe pointers to raw pointers before passing them to C
functions and vice versa after receiving raw pointers from C
functions. Thus, the main contribution of SafeFFI is a concept
and algorithm that elides sanitizer checks for safe pointers
but maintains Rust’s memory-safety guarantees for those safe
pointers even if they are casted to or from raw pointers and
used in potentially vulnerable C or unsafe Rust code.

To implement this concept, we also contribute a modular
architecture that enables the use of different sanitizers as a
memory-safety backend (see Figure 2).

Since the Rust compiler is build on top of the LLVM
compiler framework, we can utilize existing LLVM sani-
tizers. We implemented our approach with HWASAN and
SoftBound/CETS. The implementation consists of the follow-
ing steps

1) Pointer Annotation: Step 1 is implemented in the Rust
compiler where we have detailed type information available
to differentiate between safe and raw pointers, which is lost
during lowering from Rust’s Mid-Level Intermediate Repre-
sentation (MIR) to LLVM IR. We annotate safe pointers, raw
pointers, and casts between them by attaching LLVM Metadata
Nodes to the respective LLVM IR Values. In those annotations,
we include the size of the pointed-to memory-objects which
is necessary to convert the spatial safety requirements of the
Rust compiler to the spatial memory-safety metadata of the
sanitizer.

2) Intra-Procedural Static Analysis: In the SafeFFI LLVM
Pass, we conduct a static taint analysis to determine which
LLVM values inside a function are safe pointers or raw
pointers. All pointers are initialized as ‘“safe”. When the
analysis encounters a “raw” pointer annotation, the pointer
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Fig. 3. SafeFFI reduces the sanitizer’s performance overhead significantly.

is tainted accordingly as “raw”. If a pointer is casted from
raw to safe, we remove the “raw” taint and additionally insert
a sanitizer check instruction. With this instruction, SafeFFI
guarantees temporal safety, and uses the size value attached
in the annotation to ensure that Rust’s spatial safety guarantee
upholds. Thereby, we ensure that every untainted pointer can
be treated as a safe Rust pointer and is guaranteed to adhere
to Rust’s memory-safety rules.

3) Optimization We slightly modify the sanitizers to query
our analysis results and elide creation, propagation, and vali-
dation of the sanitizer’s memory-safety metadata for all safe
pointers.

1V. EVALUATION

For our first evaluation, we focused on HWASAN as this
sanitizer is maintained inside the LLVM project and works
more stable for Rust code than the SoftBound/CETS prototype.

A. Performance

For evaluating the run-time performance, we selected four
real-world Rust crates that contain micro-benchmarks and
measured them in three configurations: baseline (without
sanitizer), with HWASAN, and with a SafeFFI-optimized
HWASAN. The results in Figure 3 show that SafeFFI reduces
HWASAN’s run-time overhead from 11x to 5x on average.

B. Security

To validate that our optimizations do not reduce the san-
itizer’s capabilities, we reproduced eight crates with known
vulnerabilities with and without SafeFFI. HWASAN detected
seven out of the eight vulnerabilities in our dataset. With our
SafeFFI optimizations additionally enabled, we can also detect
all seven vulnerabilities that HWASAN detected. This shows
evidence that SafeFFI successfully maintains the security guar-
antees of the utilized sanitizer while reducing its performance
overhead.
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