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Abstract. A Webview embeds a fully-�edged browser in a mobile application

and allows that application to expose a custom interface to JavaScript code. This

is a popular technique to build so-called hybrid applications, but it circumvents

the usual security model of the browser: any malicious JavaScript code injected

into the Webview gains access to the custom interface and can use it to manipu-

late the device or ex�ltrate sensitive data. In this paper, we present an approach

to systematically evaluate the possible impact of code injection attacks against

Webviews using static information �ow analysis. Our key idea is that we can

make reasoning about JavaScript semantics unnecessary by instrumenting the

application with a model of possible attacker behavior—the BabelView. We eval-

uate our approach on 25,000 apps from various Android marketplaces, �nding

10,808 potential vulnerabilities in 4,997 apps. Taken together, the apps reported

as problematic have over 3 billion installations worldwide. We manually validate

a random sample of 50 apps and estimate that our fully automated analysis

achieves a precision of 81% at a recall of 89%.
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1 Introduction
The integration of web technologies in mobile applications enables rapid cross-platform

development and provides a uniform user experience across devices. Web content is

usually rendered by a Webview, a user interface component with an embedded browser

engine (WebView in Android, UIWebView in iOS). Webviews are widely used: in 2015,

about 85% of applications on Google’s Play Store contained one [17]. Cross-platform

frameworks such as Apache Cordova, which allow apps to be written entirely in

HTML and JavaScript, have contributed to this high rate of adoption and given rise

to the notion of hybrid applications. Even otherwise native applications often embed

Webviews for displaying login screens or additional web content.

Unfortunately, Webviews bring new security threats [15–17,24]. While the Android

Webview uses WebKit to render the page, the security model can be modi�ed by app

developers. Whereas standalone browsers enforce strong isolation, Webviews can

intentionally poke holes in the browser sandbox to provide access to app- and device-

speci�c features via a JavaScript interface. For instance, a hybrid banking application

could provide access to account details when loading the bank’s website in a Webview,

or it could relay access to contacts to �ll in payee details.
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For assessing the overall security of an application, it is necessary to understand

the implications of its JavaScript interface. When designing the interface, a developer

thinks of the functionality required by her own, trusted JavaScript code executing in

the Webview. However, there are several ways that an attacker can inject malicious

JavaScript and access the interface [7, 17].

The observation that exposed interfaces can pose a security risk was made in previ-

ous work [4,9]; however, not all interfaces are dangerous or o�er meaningful control to

an attacker. The intuition is that �agging up—or even removing from the marketplace—

any applications with an exposed JavaScript interface would be an excessive measure.

By assessing the risk posed by an application, we can focus attention on the most

dangerous cases and provide meaningful feedback to developers.

We rely on static analysis to evaluate the potential impact of an attack against

Webviews, with respect to the nature of the JavaScript interfaces. Our key idea is that

we can instrument an application with a model of potential attacker behavior that

over-approximates the possible information �ow semantics of an attack. In particular,

we instrument the target app and replace Android’s Webview and its descendants with

a specially crafted BabelView that simulates arbitrary interactions with the JavaScript

interface. A subsequent information �ow analysis on the instrumented application

then yields new �ows made possible by the attacker model, which gives an indication

of the potential impact. Together with an evaluation of the di�culty of mounting an

attack, this can provide an indication of the overall security risk.

Instrumenting the target application allows us to build on existing mature tools

for Android �ow analysis. This design makes our approach particularly robust, which

is important on a quickly changing platform such as Android. In addition, since our

instrumentation is over-approximate, we inherit any soundness guarantees o�ered

by the �ow analysis used. Independently of us, Yang et al. [31] developed a related

approach to address the same problem, but with a closed source system relying on a

custom static analysis. Our paper makes the following contributions:

– We introduce BabelView, a novel approach to evaluate the impact of code injec-

tion attacks against Webviews based on information �ow analysis of applications

instrumented with an attacker model. BabelView is implemented using Soot [27]

and is available as open source.

– We analyze 25,000 applications from the Google Play Store to evaluate our approach

and survey the current state of Webview security in Android. Our analysis reports

10,808 potential vulnerabilities in 4,997 apps, which together are reported to have

more than 3 billion installations. We validate the results on a random sample of 50

applications and estimate the precision to be 81% with a recall of 89%, con�rming

the practical viability of our approach.

In the remainder of the paper, we brie�y explain Android WebViews (§2) and

introduce our approach (§3) before describing the details of our implementation (§4).

We evaluate BabelView and report the results of our Android study (§5) and discuss

limitations (§6). Finally, we present related work (§7) and conclude (§8).
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2 Android WebViews

To provide the necessary context for the remainder of the paper, we �rst introduce key

aspects of Android Webviews. An Android application can instantiate a Webview by

calling its constructor or by declaring it in the Activity XML layout, from where the

framework will create it automatically. The speci�cs of how the app interacts with the

Webview object depend on which approach it follows; in either case, a developer can

extend Android’s WebView class to override methods and customize its behavior.

The WebView class o�ers mechanisms for interaction between the app and the web

content in both directions. Java code can execute arbitrary JavaScript code in the

Webview by passing a URL with the “javascript:” pseudo-protocol to the loadUrl

method of a Webview instance. Any code passed in this way is executed in the context

of the current page, just like if it were typed into a standalone browser’s address bar.

For the other direction, and to let JavaScript code in the Webview call Java methods, the

Webview allows to create custom interfaces. Any methods of an object (the interface
object) passed to the WebView.addJavascriptInterface method that are tagged with the

@JavascriptInterface annotation
1

(the interface methods) are exported to the global

JavaScript namespace in the Webview. For instance, the following example makes a

single Java method available to JavaScript:

LocationUtils lUtils = new LocationUtils();
wView.addJavascriptInterface(lUtils, "JSlUtils");

public class LocationUtils {
@JavascriptInterface
public String getLocation() {
do_something();

}
}

Here, LocationUtils is bound to a global JavaScript object JSlUtils in the Webview

wView. JavaScript code can access the annotated Java method getLocation() by calling

JSlUtils.getLocation().

The Webview’s JavaScript interface mechanism enforces a policy of which Java

methods are available to call from the JavaScript context. Developers of hybrid apps are

left to decide which functionality to expose in an interface that is more security-critical

than it appears. It is easy for a developer to erroneously assume the JavaScript interface

to be a trusted internal interface, shared only between the Java and JavaScript portions

of the same app. In reality, it is more akin to a public API, considering the relative

ease with which malicious JavaScript code can make its way into a Webview (see §3.1).

Therefore, care must be taken to restrict the interface as much as possible and to secure

the delivery of web content into the Webview. In this work we provide a way for

developers and app store maintainers to detect applications with insecure interfaces

susceptible to abuse; our study in §5 con�rms that this is a widespread phenomenon.

1
The @JavascriptInterface annotation was introduced in API level 17 to address a security

vulnerability that allowed attackers to execute arbitrary code via the Java re�ection API [19].
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3 Overview
We now introduce our approach by laying out the attacker model (§3.1), describing our

instrumentation-based model for information �ow analysis (§3.2), and discussing how

the instrumentation preserves the application semantics (§3.3).

3.1 Attacker Model

Our overall goal is to identify high-impact vulnerabilities in Android applications. Our

insight is that injection vulnerabilities are di�cult to avoid with current mainstream

web technologies, and that their presence does not justify blocking an app from being

distributed to users. Indeed, any standalone browser that allows loading content via

insecure HTTP has this vulnerability (while calling this a “vulnerability” may be

controversial, it clearly has security implications and has led to an increasing adoption

of HTTPS by default). The ubiquity of advertisement libraries in Android apps further

increases the likelihood of foreign JavaScript code gaining access to JavaScript interfaces.

Following this insight, we aim to pinpoint the risk of using a Webview that is embedded

in an app. To do this, we assess the degrees of freedom an attacker gains from injecting

code into a Webview with a JavaScript interface, which determines the potential impact

of an injection attack.

Consequently, the attacker model for our analysis consists of arbitrary code injection

into the HTML page or referenced scripts loaded in the Webview. In our evaluation, we

actively try to inject JavaScript into the Webview—e.g., as man in the middle (see §5.5).

We note, however, that other channels are available to manipulate the code loaded

into a Webview, including malicious advertisements or site-speci�c cross-site-scripting

attacks [4, 9, 10]. To abuse the JavaScript interface, the attacker then only requires the

names of the interface methods, which can be obtained through reverse-engineering.

Note that even a man in the middle becomes more powerful with access to the JavaScript

interface: the interface can allow the attacker to manipulate and retrieve application and

device data that would not normally be visible to the adversary. For instance, consider a

remote access application with an interface method getProperty(key), which retrieves

the value mapped to a key in the application’s properties. Without accessing the

interface, an attacker may only ever observe calls to getProperty with, say, the keys

"favorites" and "compression", but the attacker would be free to also use the function

to retrieve the value for the key "privateKey".

3.2 Instrumenting for Information Flow

Our approach is based on static information �ow (or taint) analysis. We aim to �nd

potentially dangerous information �ows from injected JavaScript into sensitive parts

of the Java-based app and vice-versa. At �rst glance, this appears to require expensive

cross-language static analysis, as recently proposed for hybrid apps [5, 13]. However,

we can avoid analyzing JavaScript code because our attacker model assumes that the

JavaScript code is controlled by the attacker. Therefore, we want to model the actions

performed by any possible JavaScript code, and not that of developer-provided code

that is supposed to execute in the Webview.

To this end, we perform information �ow analysis on the application instrumented

with a representation of the attacker model in Java, such that the result is an over-

approximation of all possible actions of the attacker (we discuss alternative solutions
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Algorithm 1 Information �ow attacker model

1: procedure Attacker
2: while true do
3: choose iface ∈ JS-interfaces

4: result ← iface(source(), source(), . . . )

5: sink(result)

in §6). We replace the Android WebView class (and custom subclasses) with a BabelView,

a Webview that simulates an attacker speci�c to the app’s JavaScript interfaces. We

then apply a �ow-, �eld-, and object-sensitive taint analysis [2] to detect information

�ows that read or write potentially sensitive information as a result of an injection

attack.

The BabelView provides tainted input sources to all possible sequences of interface

methods and connects their return values to sinks, as shown in Algorithm 1. Here,

source() and sink() are stubs that refer to sources and sinks of the underlying taint

analysis. The non-deterministic enumeration of sequences of interface method invoca-

tions is necessary since we employ a �ow-sensitive taint analysis. This way, our model

also covers situations where the information �ow depends on a speci�c ordering of

methods; for instance, consider the following example:

String id;

@JavascriptInterface
public void initialize() {
this.id = IMEI();

}
@JavascriptInterface
public String getId() {
return this.id;

}

Here, a call to initialize (line 4) must precede any invocation of getId (line 8) to

cause a leak of sensitive information (the IMEI). The �ow-sensitive analysis correctly

distinguishes di�erent orders of invocation, which helps to reduce false positives. In the

BabelView, the loop in Algorithm 1 coupled with non-deterministic choice forces the

analysis to join abstract states and over-approximate the result of all possible invocation

orders.

Figure 1 illustrates our approach. We annotate certain methods in the Android API

as sources and sinks (see §4.4), which may be accessed by methods in the JavaScript

interface. The BabelView includes both a source passing data into the interface methods

and a sink receiving their return values to allow detecting �ows both from and to

JavaScript. The source corresponds to any data injected by the attacker, and the sink to

any method an attacker could use to ex�ltrate information, e.g., a simple web request.

3.3 Preserving Semantics

Our instrumentation eliminates the requirement to perform a cross-language taint

analysis and moves all reasoning into the Java domain. However, we must make sure
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Fig. 1. BabelView models �ows between the attacker and sensitive sources and sinks in the

Android API that cross the JavaScript interface.

that, apart from the attacker model, the instrumentation preserves the original applica-

tion’s information �ow semantics. In particular, we need to integrate the execution of

the attacker model into the model of Android’s application life cycle used as the basis

of the taint analysis [2]. We solve this by overriding the methods used to load web

content into the Webview (such as loadUrl() and loadData()) and modifying them

to also call our attacker model (Algorithm 1). This is the earliest point at which the

Webview can schedule the execution of any injected JavaScript code. The BabelView

thus acts as a proxy simulating the e�ects of malicious JavaScript injected into loaded

web content.

As the BabelView interacts only with the JavaScript interface methods, it does

not a�ect the application’s static information �ow semantics in any other way than

an actual JavaScript injection would. Obviously, this is not necessarily true for other

semantics: for example, the instrumented application would likely crash if it were

executed on an emulator or real device.

4 BabelView
In this section, we explain the di�erent phases of our analysis. Figure 2 provides a high-

level overview: in Phase 1 (§4.1), we perform a static analysis to retrieve all interface

objects and methods, and associate them to the respective Webviews. In Phase 2 (§4.2),

we generate the BabelView, and, in Phase 3 (§4.3), we instrument the target application

with it. In Phase 4 (§4.4), we run the taint �ow analysis on the resulting applications

and �nally, in Phase 5 (§4.5), we analyze the results for �ows involving the BabelView.

We implemented our static analysis and instrumentation using the Soot frame-

work [27]; our information �ow analysis relies on FlowDroid [2]. Overall, our system

adds about 6,000 LoC to both platforms.

4.1 Phase 1: Interface Analysis

As the �rst step of our analysis, we statically analyze the target application to gather

information about its Webviews and JavaScript interfaces. The goal of this stage is to

compute a mapping from Webview classes to classes of interface objects that may be

added to them at any point during execution of the app.
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Fig. 2. Phases of our analysis.

Using Soot, we can generate the application call graph and precisely resolve

callers and callees. We iterate through all classes and methods, identifying all calls to

addJavascriptInterface, from where we then extract Webviews that will hold interface

objects. We make sure to treat inheritance and polymorphism soundly in this stage,

e.g., where parent classes are used in variable declarations. We illustrate our approach

to handle this on the following code example:

class FrameworkBridge {
@JavascriptInterface
public int foo() {...}

}

class MyBridge extends FrameworkBridge {
@JavascriptInterface
public int bar() {...}

}

class MyWebView extends WebView {...}

void initInterface(WebView aWebView, FrameworkBridge aBridge) {
aWebView.addJavascriptInterface(aBridge, "Android");

}

...
MyWebView mWebView = new MyWebView();
initInterface(mWebView, new MyBridge());
...

The code is adding the interface MyBridge to mWebView, an instance of MyWebView. The

method initInterface is a wrapper (say, from a hybrid app framework) that contains

the actual call to addJavascriptInterface. When processing the call, we extract the

types of aWebView and aBridge from their parameter declarations. For the Webview, we

must process all descendants of its declared class to include the types of all possible

instances. For aWebView, this means we must instrument all descendants (including

anonymous classes) of WebView, i.e., WebView and MyWebView.
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Similarly, we are interested in the type of aBridge. Again, we must iterate over

all subclasses of its declared type FrameworkBridge to ensure capturing the bridge

added at runtime. However, since addJavascriptInterface is of the unconstrained type

Object, this could potentially include all classes. Therefore, we restrict processing to

just those subclasses that contain at least one @JavascriptInterface annotation. As a

result, we obtain a superset of all interface objects that can be added by this method,

i.e., FrameworkBridge and MyBridge.

Continuing the example, we now have the mapping from Webview classes to

classes of interface objects as {WebView ↦ {FrameworkBridge, MyBridge}, MyWebView ↦
FrameworkBridge, MyBridge}}. Any additional occurrences of addJavascriptInterface

will be processed analogously and the results added to the set. Because the analysis

in this phase is conservative in collecting compatible types, the result is a sound over-

approximation of the mapping of Webviews to JavaScript interfaces that can occur at

runtime (modulo inaccuracies from dynamic code, see §6).

4.2 Phase 2: Generating the BabelView

We generate a BabelView class for each WebView in the mapping. Each BabelView de�nes

a subclass of its WebView (we remove the parent’s final modi�er if necessary) and

overrides all of its parent’s constructors so it can be used as a drop-in replacement. We

make the associated interface objects explicitly available in each BabelView. To this end,

we override the addJavascriptInterface method to store the interface objects passed

to it in instance �elds of the BabelView class.

To implement the attacker model, the BabelView needs to override all methods

that load external resources and could thus be susceptible to JavaScript injection.

In particular, we override loadUrl, postUrl, loadData, and loadDataWithBaseURL. We

automatically generate these methods as a call to their super implementation followed

by a Java implementation of the attacker model, Algorithm 1. Finally, the BabelView is

equipped with two stub methods, leak and taintSource, representing a tainted sink

and a tainted input, respectively.

4.3 Phase 3: Instrumentation

In the next phase, we instrument the application to replace its Webviews with our

generated BabelView instances. The instrumentation is case-dependent on how the

Webview is instantiated (see §2): if it is created via an ordinary constructor call, that

constructor is replaced with the corresponding constructor of its BabelView class. If

the Webview is created via the Activity XML layout, our instrumentation searches for

calls to findViewById, which the app uses to obtain the Webview instance (e.g., in order

to add the JavaScript interface to it). To identify the calls to findViewById returning a

Webview, our instrumenter identi�es explicit casts to a Webview class. Because we do

not parse the XML layout itself, we arbitrarily choose one of the constructors of the

BabelView. While this could potentially be a source of false positives or negatives, it

would require a highly speci�c and unconventional design of the Webview class.

4.4 Phase 4: Information Flow Analysis

We perform a static information �ow analysis on the instrumented application to

identify information �ows involving the attacker model. Since our approach relies on
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instrumenting the application under analysis, it is agnostic to the speci�c �ow analysis.

We decided to rely on the open source implementation of FlowDroid [2], inheriting its

context-, �ow-, �eld-, and object-sensitivity, as well as its life cycle-awareness.

Sources and sinks are selected corresponding to sensitive information sources and

device functions, modi�ed from the set provided by SuSi [22]. We further include the

sources and sinks used in the BabelView classes.

The information �ow analysis abstracts the semantics of Android framework meth-

ods. FlowDroid uses a simple modeling system (the TaintWrapper), where any method

can either (i) be a source, (ii) be a sink, (iii) taint its object if any argument is tainted and

return a tainted value if its object is tainted, (iv) clear taint from its object, (v) ignore

any taint in its arguments or its object. We extended the TaintWrapper with several

models that were relevant for the types of vulnerabilities we were interested in, e.g., to

precisely capture the creation of Intents from tainted URIs.

Finally, information �ows indicating that sensitive functionality is exposed via the

JavaScript interface are identi�ed, triggering an alarm showing a potential vulnerability.

For instance, consider an Intent object initialized to perform phone calls. A �ow from

source to putExtra will taint the Intent; if it is then passed as an input to startActivity,

an attacker can perform calls on behalf of the user.

4.5 Phase 5: Analysis Re�nement

Preferences. Taint analysis cannot distinguish between individual key-value pairs in

a map. Preferences are a commonly used map type in Android apps that often store

sensitive information as a key-value pair. After the information �ow analysis, we re�ne

our results by statically deriving values of keys for access to preferences. Our de�nition

of sources and sinks allows to identify both �ows from and to the Preferences. Given

two �ows, one inserting and the other retrieving values from Preferences, we are

interested in understanding whether (i) the value is of the same type and (ii) the access

key is the same. If these conditions are met, we have identi�ed a potential leak via

Preferences. To determine the key values, we modeled StringBuilder and implemented

an intra-procedural constant propagation and folding for strings. Finally, if an interface

method allows web content to interact with a preferences object, BabelView reports

all keys used to access it, since preferences can be used to store sensitive values. This

allows to inspect �ows to or from preferences entries, even if these values are not

dependent on a speci�c source in the Android API. We match key names against a

list of suspicious entries, which can highlight potential leaks of sensitive app-speci�c

information (see §5.7). In the same manner, we also highlight suspiciously named

interface methods.

Intents. Flow analysis can detect situations where Intent creation depends on tainted

input. However, it tells nothing about the type of the Intent created, as this depends

on speci�c parameters, e.g, those provided to its setAction method. For interpreting

results, it is important, however, to know the action of an Intent that can be controlled

by an attacker. For any �ow that reaches the startActivity sink, we perform an inter-

procedural backward dependency analysis to the point of the initialization of the Intent.

If the Intent action is not set within the constructor, we perform a forward analysis

from the constructor to �nd calls to setAction on the Intent object. The analysis may
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fail where actions are de�ned within intent �lters (XML de�nitions) or through other

built-in methods. To increase precision in our inter-procedural analysis, we ensure that

the call-stack is consistent with an invocation through the interface method; i.e., the

interface method that triggered the �ow must be reachable.

5 Evaluation
We now present our evaluation of BabelView and the results of our study of vulnerabil-

ities in Android applications. Below, we explain our methodology (§5.1) and ask the

following research questions to evaluate our approach:

1. Can BabelView successfully process real-world applications? We conduct a

study on a randomly selected set of applications from the AndroZoo [1] dataset

and provide a breakdown of all results (§5.2).

2. Does BabelView expose real vulnerabilities? We discuss some of the vulnera-

ble apps in more detail to understand what an attacker can achieve under what

conditions (§5.7).

3. What are the precision and recall of our analysis? We manually validate a

random sample of apps, estimating overall precision and recall (§5.4).

We also shed light on the current state of Webview security on Android with the

following questions:

4. How frequent are di�erent types of alarms? We report results per alarm,

which provides an insight into the prevalence of potential vulnerabilities (§5.3).

5. Are there types of potential vulnerabilities that are likely to occur in com-
bination? We compute the correlation between alarms raised by our analysis and

analyze our �ndings (§5.6).

Unfortunately, we were unable to conduct a direct comparison with BridgeScope, the

work most closely related to ours. Despite helpful communication, the authors were

ultimately unable to share neither their experimental data nor their implementation

with us. In the spirit of open data, we make all our code and data available
2
.

5.1 Methodology

We obtained our dataset from AndroZoo [1], using the list of applications available

on July 22nd, 2016, when it contained about 4.4 million samples. We downloaded a

random subset of 209,069 apps, and then �ltered our dataset for applications containing

a Webview, a call to addJavascriptInterface, and granting permission to access the

Internet. As a result, we obtained 62,674 total applications. Finally, from the obtained

sample, we randomly extracted 25,000 applications found in the Google Play Store,

which we used for our analysis.

We ran BabelView on �ve servers: one 32-core with 250GiB of RAM and four 16-core

with 125GiB of RAM. Each application took on average 180 seconds to complete. The

high precision of FlowDroid’s information �ow analysis can lead to long processing

time in the order of hours. Therefore, we set a time limit of 15 minutes, which was a

sweet spot in the sense that apps taking longer would often go over an hour. A positive

2 https://github.com/ClaudioRizzo/BabelView
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e�ect of our instrumentation-based approach is that we bene�t from improvements

in the underlining �ow analysis. Indeed, over the duration of this project, we saw a

noticeable accuracy enhancement from the constant improvements on FlowDroid.

Each application underwent three main phases: (i) BabelView instrumentation, (ii)

FlowDroid analysis on the instrumented app and (iii) analysis of the resulting �ows to

identify suspect �ows and raise alarms. On the reported applications, we performed

a feasibility analysis. We searched the app for plain http:// URLs and assess the

resilience of the app against injection attacks.

5.2 Applicability

Running our tool chain on the 25,000 target applications resulted in 1,286 general

errors and 3,837 �ow analysis timeouts. The remaining 19,877 apps were successfully

analyzed and we obtained the following breakdown: 832 applications had no interface

objects at all or no interface methods in case the target API was version 17 or above;

14,048 applications had no �ows involving our attacker model; and 4,997 were reported

as dangerous, i.e., containing �ows due to the attacker behavior. This amounts to a rate

of 26.2%. We investigated the reasons for the crashes, and most happened either due to

unexpected byte code that Soot fails to handle or while FlowDroid’s taint analysis was

computing callbacks.

Among applications with interface objects, we also considered those targeting

outdated versions of the Android API, since this is still a common occurrence [18,25,28].

When using Webviews prior to API 17, any app is trivially vulnerable to an arbitrary

code execution disclosed in 2013
3
. Despite targeting an old API version, if compiled

with a newer Android SDK, these applications can still use the @JavascriptInterface

annotation. While the annotation itself does not provide extra security, these apps may

target newer APIs in future releases [24].

5.3 Alarms Triggered

We successfully used BabelView to examine 19,877 applications. We found that 4,997 of

them triggered an alarm (i.e., our analysis reported a potential vulnerability), meaning

that the interface methods could be exploited by foreign JavaScript from injection

or advertisement. Table 1 shows a breakdown of all the alarms we observed in our

analysis. Among the most common alarms, we observed the possibility of writing to

the File System (Write File), capability to start new applications (Start App), violation

of the Same Origin Policy (Frame Confusion) and the possibility of exploiting the old

re�ection attack due to Android API prior to v17.

Writing File capabilities show the developers’ need for storing app-external data

usually coming from an app-dedicated server. We also observed that many applications

implement advertising libraries which need to open a new application, usually Google

Play Store, to allow the user to download or visualize some information. Unfortunately,

the package name of the application to open is given as input to an interface method,

enabling a possible attacker to control which app to start. Same-Origin-Policy violations

are also very common: this is the case when a loadUrl is invoked with input from

the interface methods, controlling what is loaded in to a frame. As described by Luo

3
https://labs.mwrinfosecurity.com/blog/webview-addjavascriptinterface-remote-code-

execution/
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Alarm #Apps Alarm #Apps Alarm #Apps

Open File 385 Write File 1,444 Read File 593

TM Leaks 39 Pref. TM Leaks 4 Pref. Connectivity Leaks 4

SQL-lite Leaks 136 SQL-lite Query 438 Pref. SQL-lite Leaks 11

GPS Leaks 43 Pref. GPS Leaks 1 Directly Send SMS 6

Directly Make Calls 19 Call via Intent 314 Email/SMS via Intent 778

Take Picture 7 Download Photo 317 Play Video/Audio 378

Edit Calendar 357 Post to Social 293 Start App 1,321

API prior to 17 1,039 Unknown Intent 1,107 Frame Confusion 1,039

Fetch Class 85 Fetch Constructor 0 Constructor init 13

Fetch Method 85 Method Parameter 622

Table 1.Number of applications per alarm category. Pref. stands for indirect leaks via a Preference

object; TM stands for Telephony Manager.

et al. [15], JavaScript executing in an iframe runs in the context of the main frame,

violating the SOP.

Many applications still target an API version prior to 17 [18, 25, 28], often due to

backwards compatibility or simply due to confusion in declaring the SDK version.

Other alarms involve the possibility to prompt the user with an email or a text message

to send, directly sending an SMS or performing a phone call; prompting the user with

the call dialer; posting content to social network; interacting with the calendar by

creating or editing an event; playing videos or audio; leaking sensitive information like

the device ID or phone numbers (i.e. TM Leaks), GPS position, SQL information, etc.

Finally, we shed light on the possible use of Java Re�ection inside interface methods.

Fetch Class, Fetch Constructor, Constructor init, Fetch Method and Method Param-

eter are all signs that an attacker controls input used to execute methods via Java

re�ection. Although these are rare situations and often hard to exploit, they are ex-

tremely high reward for an attacker as they can potentially allow to circumvent the

@JavascriptInterface annotation, leading to arbitrary code execution. We manually

analyzed some applications presenting these alarms and in some cases an attacker

could take control of a method and its parameters, leading to remote code execution.

5.4 Manual Validation

We used manual validation to estimate the accuracy of our analysis. In particular we

sampled and manually analyzed (i.e., reversed and decompiled) 50 applications. We

evaluated two aspects:

1. How accurate is BabelView with respect to each individual alarm it raises?

2. Does BabelView function as an e�ective alarm system for hybrid apps?

We began checking all types of alarms for each app and we established whether an

alarm was correctly triggered or correctly not triggered. We observed 42 TPs (True Pos-

itives), 10 FPs (False Positives), 1,494 TNs (True Negatives) and 5 FNs (False Negatives).

From this, we can compute a precision of 81% and a recall of 89% for our analysis.
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The results obtained are in line with our expectations. Our instrumentation does

not alter the semantics of applications other than adding a model of attack behavior.

Therefore, our precision depends on the underlining �ow analysis. However, more false

positives could be introduced due to the object-insensitivity of our instrumentation—i.e.,

we distinguish types but not instances of Webviews. Similarly, a very low false negative

rate is common for data �ow analysis; however, FNs are still possible, mainly due to

incomplete Android framework.

To evaluate BabelView on a per-app basis, we consider a true positive the case

where an app contains at least one potential vulnerability and at least one alarm is

raised. True negatives and false positives/negatives follow accordingly. We observed

19 TPs, 2 FPs, 29 TNs, and 0 FNs, which yields a precision of 90% and a recall of

100%. This suggest that BabelView performs well as an alarm system for potentially

dangerous applications. Even if individual alarms can be false positives, the correlation

of dangerous interfaces appears to leads to highlighted apps being problematic with

high probability. The false negatives that are present when taken per vulnerability

disappear when analyzed on a per app basis.

5.5 Feasibility Analysis

To better understand the feasibility of exploiting potential vulnerabilities highlighted

by BabelView, we measured the di�culty of performing an injection attack. To this

end we use a three-step process: (i) we check the application for TLS misuse using

MalloDroid [7]; (ii) we search for hard-coded URLs beginning with http://, suggesting

that web content could be loaded via an insecure channel; and (iii) we actively injected

JavaScript code into Webviews.

MalloDroid reported 61.5% of applications using TLS insecurely and 98.7% of apps

were found hard-coding HTTP URLs. In order to actively inject JavaScript, we stimu-

lated each reported application with 100 Monkey
4

events and actively intercepted the

connection (using Bettercap
5
), trying to execute a JavaScript payload. Moreover, we

set up our own certi�cate authority and also tried SSL strip attacks. The goal of the

injection was to determine whether the reported interface methods were present in the

Webview. To this end, we generated JavaScript code checking for the presence of the

interface objects reported by the BabelView analysis. We were able to inject JavaScript

in 1,275 applications and in 482 cases we con�rmed the presence of the vulnerable

interface object.

5.6 Correlation of Alarms

We were interested in �nding correlations among the alarm categories we identi�ed.

This does not only account for common patterns of functionality, but also identi�es

single alarms that taken together could increase the attack capabilities, e.g., combining

opening and writing of a �le results in writing of arbitrary �les.

We can see in the correlation matrix in Figure 3 that alarms involving related

functionality tend to be positively correlated (in red). For example, opening and writing

a �le; SQL queries and leaks; and operations involving intents such as call via intent,

send email, edit calendar, play video, post to social, and download pictures. While some

4 https://developer.android.com/studio/test/monkey.html
5 https://www.bettercap.org
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Fig. 3. Correlation matrix of alarms.

correlations are evident, some appear incidental, such as intent calls and playing of

videos. Based on manual inspection (see §5.7), we found that these categories of alarms

often appear together in apps using common libraries, e.g., for advertisements.

5.7 Individual Case Studies

We now report individual case studies to illustrate the nature of our �ndings.

Advertising Libraries. During the evaluation, we discovered an advertising library,

used by 353 of 4,997 applications, which implements a Webview exposing many sen-

sitive interface methods. In particular, a successful JavaScript injection would allow

an attacker to perform di�erent actions, including downloading/saving of pictures,

sending email or SMS by manipulating Intents, playing audio or videos on the vic-

tim’s phone, opening new applications, creating calendar events, and posting to social

networks.

Another library, used by 1,507 applications, allows an attacker to start new applica-

tions on the phone, controlling the Intent extras provided to the Activity.
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Game App. Among our results, we found a game application (“SwingAid Level

up Golf”) that uses several Webviews and JavaScript interfaces leading to di�erent

alarms: SQL-lite leaks via preferences, frame confusion, and telephony manager Leaks.

Moreover, we discovered the value loginPwd among preferences keys accessible from

a JavaScript interface. We were able to manually con�rm all alarms as true positives.

Interface methods accessible when creating an account creation within the game

include getAccountEmail, getPhoneNumber, and getUserPwd. We successfully performed

a man-in-the-middle attack and injected JavaScript to access all three methods. The

account e-email and phone number are accessible immediately upon attempting to

create an account. The password is stored in a local database, cached in the preferences

and accessible with the loginPwd key. When the user visits the account creation page a

second time, the password can be stolen via the interface method.

The underlying problem is twofold and representative for many Webview vulnera-

bilities: �rst, the Webview loads data via an insecure channel, and second, the JavaScript

interface makes sensitive data available (a plaintext password). Even if the password

would otherwise not be sent via the insecure channel, a JavaScript injection attack is

able to retrieve it through the interface and extract it directly. Since our discovery, all

issues have been resolved in a newer version of the application (version 2.6).

6 Limitations and Discussion
Avoiding Instrumentation In principle, we could avoid instrumenting the applica-

tion by summarizing interface methods with an interprocedural taint analysis. However,

to achieve the same precision, the analysis would have to be computationally expensive:

on method entry, any reachable �eld in any reachable object (not just arguments of the

interface method) would have to be treated as carrying individual taint. On method

exit, the e�ects on all reachable �elds would have to stored, before resolving the e�ects

among all interface method summaries. Our instrumentation-based approach not only

avoids this cost, but also allows us to factor out �ow analysis into a separate tool, a

design choice that improves robustness and maintainability.

Analysis Limitations Our system, together with the underlying �ow analysis, is

subject to common limitations of static analysis and hence can fail to detect Webviews

and interfaces instantiated via native code, re�ection, or dynamic code loading. In

principle, this currently allows a developer intent on doing so to hide sensitive JavaScript

APIs. However, we focus on benign software and vulnerabilities that are honest mistakes

rather than planted backdoors. Still, we note that BabelView would automatically bene�t

from future �ow analyses that may counteract evasion techniques.

A potential source of false positives is that BabelView does not distinguish Webview

instances of the same type and will conservatively join the JavaScript interfaces of all

instances. Furthermore, our analysis loses precision when reporting indirect leaks via

Preferences or Bundle. As mentioned in §4.4, we connect sensitive �ows into the appli-

cation preferences with �ows from the preferences to the instrumented sink method

in BabelView. While this is sound and will conservatively capture any information

leaks via preferences, it is not taking into account any temporal dependencies between

storing and retrieving the value. A di�erent treatment of this would be a potential

source of false negatives, since preferences persist across application restarts.
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Attack Feasibility In our feasibility analysis, we actively try to inject JavaScript

code into a Webview, aiming at identifying whether the reported interface object is

present in the Webview. The presence of the interface object means that all its interface

methods are available to use, including the one BabelView reported. However, we do

not actively invoke these methods and thus we cannot be sure of their exploitability.

Mitigating Potential Vulnerabilities To avoid giving potential attackers control

over sensitive data and functionality, developers can follow a set of design principles.

First of all, Webview contents should be exclusively loaded via a secure channel. Second,

as mentioned in the Android developer documentation, Webviews should only load

trusted contents. External links have to be opened with the default browser. For also

protecting against malicious ads or cross-site-scripting attacks, JavaScript interfaces

should o�er an absolute minimum of functionality and avoid arguments as far as

possible. Finally, recent work also introduced novel mechanisms to enforce policies on

hybrid applications (see §7.2).

7 Related Work
We now review work on vulnerabilities and attacks against Webview (§7.1), dis-

cuss related work on policies and access control (§7.2), and contrast with work on

instrumentation-based modeling (§7.3).

7.1 Webview: Attacks and Vulnerabilities

Webview vulnerabilities have been widely studied [4, 6, 15–17, 20]. Luo et al. give a

detailed overview of several classes of attacks against Webviews [15], providing a basis

for our work. Neugschwandtner et al. [20] were the �rst to highlight the magnitude

of the problem. In their analysis, they categorize as vulnerable all applications imple-

menting JavaScript interfaces and misusing TLS (or not using it at all). For further

precision, they analyzed permissions and discovered that 76% of vulnerable applica-

tions requested privacy critical permissions. While this is a sign of poorly designed

applications, the impact of an injection exploit very much depends on the JavaScript

interfaces, motivating the work of this paper.

A step forward towards this was made by Bifocals [6], a static analysis tool able to

identify and evaluate vulnerabilities in Webviews. Bifocals looks for potential Webview

vulnerabilities (using JavaScript interfaces and loading third party web pages) and

then performs an impact analysis on the JavaScript interfaces. In particular, it analyzes

whether these methods reach code requiring security-relevant permissions. However,

JavaScript interfaces can pose an (application-speci�c) risk without making use of

permissions. At the same time, not all JavaScript interfaces that make use of permissions

are dangerous: for example, an interface method might use the phone’s IMEI to perform

an operation but not return it to the caller.

The means by which malicious code can be injected into the Webview have been

discussed in previous work [9, 10]. Having to interact with many forms of entities,

HTML5-based hybrid applications expose a broader surface of attack, introducing new

vectors of injection for cross-site-scripting attacks [10]. While these attacks require

the user to directly visit the malicious page within the Webview, Web-to-Application

injection attacks (W2AI) rely on intent hyperlinks to render the payload simply by

clinking a link in the default browser [9]. Both discuss the threat behind JavaScript
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interfaces, but stop their analysis at the moment where the malicious payload is loaded,

without analyzing the implication of the attacker executing the JavaScript interfaces.

A large scale study on mobile web applications and their vulnerabilities was pre-

sented by Mutchler et al. [17], but did not study the nature of the exposed JavaScript

interfaces. Li et al. [14] studied a new category of �shing attacks called Cross-App Web-
View infection. This new type of attacks exploits the possibility of issuing navigation

requests from one app’s Webview to another via Intent deep linking and other URL

schemata. This can trigger a chain of requests to a set of infected apps.

Most closely related to our work is the concurrently developed BridgeScope [31],

a tool to assess JavaScript interfaces based on a custom static analysis. Similar to our

work, BridgeScope allows to detect potential �ows to and from interface methods.

BridgeScope uses a custom �ow analysis, whereas our approach intentionally allows

to reuse state-of-art �ow analysis tools. While BridgeScope’s �ow analysis performs

well on benchmarks, there appears to be no speci�c treatment of Map-like objects such

as Preferences of Bundle.

In recent work, Yang et al. [29] have combined the information of a deep static

analysis with a selective symbolic execution to actively exploit event handlers in

Android hybrid applications. In OSV-Hunter [30], they introduce a new approach to

detect Origin Stripping Vulnerabilities. These type of vulnerabilities persist when upon

invocation of window.postMessage, it is not possible to distinguish the identity of the

message sender or even safely obtain the source origin. This is inherently true for

Hybrid applications, where developers often rely on JavaScript interfaces to �ll the gap

between web and the native platform.

7.2 Webview Access Control

There have been several proposals to bring origin-based access control to Webviews [8,

23, 26]. Shehab et al. [23] proposed a framework that modi�es Cordova, enabling

developers to build and enforce a page-based plugin access policy. In this way, depending

on the page loaded, it will or will not have the permission to use exposed Cordova

plugins (i.e., JavaScript interfaces).

Georgiev et al. presented NoFrank [8], a system to extend origin-based access control

to local resources outside the web browser. In particular, the application developer

whitelists origins that are then allowed to access device’s resources. However, once

an origin is white-listed, it can access any resource exposed. Jin et al. [11] propose a

�ne-granular solution in a system that allows developers to assign di�erent permissions

to di�erent frames in the Webview.

Tuncay et al. [26] increase granularity further in their Draco system. Draco de�nes

a policy language that developers can use to design access control policies on di�erent

channels, i.e. the interface object, the event handlers and the HTML5 API. Another

framework allowing developers to de�ne security policies is HybridGuard [21]. Di�er-

ently from Draco, HybridGuard has been entirely developed in JavaScript, making it

platform independent and easy to deploy on di�erent platform and hybrid development

framework. Both Draco and HybridGuard could provide an interesting solution to the

problem of securing an interface BabelView is rising an alarm for, without unduly

restricting its functionality.
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7.3 Instrumentation-based Modeling

Synthesizing code to trigger speci�c function interfaces is not a new problem and traces

back to generating veri�cation harnesses, e.g., for software model checking [3, 12]. On

Android, FlowDroid [2] uses a model that invokes callbacks in a “dummy main” method,

taking into account the life cycle of Android activities. While the problems share some

similarity, JavaScript interfaces and Webviews are inherently varied and app-speci�c.

Therefore, we require a static analysis and cannot rely on �xed signatures. Furthermore,

because our model represents an attacker instead of a well-de�ned system, calls can

appear out of context anytime web content can be loaded in the Webview, i.e., after a

loadUrl-like method.

8 Conclusion
In this paper, we presented a novel method to use information �ow analysis to eval-

uate the possible impact of code injection attacks against mobile applications with

Webviews. The key idea of our approach is to model the possible e�ects of injected

malicious JavaScript code at the Java level, thereby avoiding any direct reasoning about

JavaScript semantics. In particular, this allowed us to rely on a robust state-of-the-art

implementation of taint analysis for Android.

We implemented our approach in BabelView, and evaluated it on 25,000 applications,

con�rming its practical applicability and at the same time reporting on the state of

Webview security in Android. With BabelView, we found 10,808 potential vulnerabilities

in 4,997 applications, a�ecting more than 3 billion users. We validated our results on a

subset of applications where we achieved a precision of 81% at a recall of 89% when

measured per alarm, or a precision of 90% and a recall of 100% when measured per

application.
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