
BorrowSanitizer
IANMCCORMACK,OLIVERBRAUNSDORF, JOHANNESKINDER, JONATHANALDRICH,
and JOSHUA SUNSHINE

The Rust programming language provides static safety guarantees via the rules of its aliasing model. However,
Rust is increasingly used in interoperation with languages that have far weaker aliasing restrictions. These
multi-language applications are particularly susceptible to violations of Rust’s aliasing rules, which can
reintroduce the types of safety issues that Rust was designed to prevent. Despite this risk, existing dynamic
analysis tools lack either the capability or performance necessary to effectively detect Rust-specific undefined
behavior in this context. We propose BorrowSanitizer, an LLVM-based dynamic instrumentation tool for
finding violations of Rust’s latest Tree Borrows aliasing model in applications that interoperate with C and
C++. Our design will leverage shadow metadata propagation alongside static optimizations to ensure that it
will be performant enough to be useful in production and compatible with fuzzing techniques. Our 30-minute
presentation will cover the motivation, design, and future goals of the project, including a live demonstration
of any features that are functional at the time of the workshop.

MOTIVATION
Memory safety issues are a common source of severe security vulnerabilities. To counteract this
threat, developers have started to write new software components in languages that provide
inherent security guarantees [11]. Rust has been a uniquely popular choice for this transition
because it provides these guarantees through static restrictions, avoiding the run-time overhead
associated with garbage collection [9, 18]. Porting existing, large-scale systems to Rust is time-
consuming. Instead, developers are increasingly adopting Rust in interoperation with components
written in memory-unsafe languages, like C and C++ [1]. Rust can still provide security benefits in
this context. However, developers will need to maintain Rust’s invariants across foreign function
boundaries to avoid reintroducing the types of safety issues that Rust was designed to prevent.

Foreign function calls are one of several “unsafe” operations that bypass Rust’s static restrictions.
Incorrect usage of these operations can violate Rust’s aliasing model. Aliasing violations undermine
Rust’s core safety guarantees, causing optimizations to be applied incorrectly and making it possible
to trigger severe security vulnerabilities through externally "safe" APIs [7, 22]. The Rust community
mitigates these issues by keeping unsafe code minimal and encapsulated, making it easier to
document and audit [8]. These tasks become impractical for Rust components that interoperate
with C and C++ applications, which introduce far more unsafe operations. Libraries that share
memory across foreign boundaries will be at a higher risk of having aliasing violations.
Miri, a Rust interpreter, is the only tool that can detect violations of Rust’s evolving aliasing

models [10, 19, 21]. However, Miri has two key limitations that prevent it from finding these Rust-
specific bugs in multi-language applications. First, Miri cannot detect undefined behavior triggered
by foreign functions. The Krabcake project [12] proposed solving this problem by creating a plugin
for Valgrind [17], but it is not fully functional yet, and it has not had active development since
June of 2023 [13]. McCormack et al. [14] extended Miri to support interpreting LLVM bitcode and
found 46 instances of undefined or undesired behavior in 37 libraries—including one maintained by
the Rust project. However, neither of these approaches fully addresses Miri’s second limitation: it
is slow—up to 1000 times slower than native execution [3]. Krabcake would significantly reduce
this overhead, but Valgrind’s baseline is still between four and five times the speed of native
execution [20]. This limits the potential effectiveness of any static optimizations. An approach
based on compile-time instrumentation would theoretically allow us to reach native speed if we can
soundly remove run-time checks for components that are verifiably safe. This would be preferable
for compatibility with fuzzing tools.



2 Ian McCormack, Oliver Braunsdorf, Johannes Kinder, Jonathan Aldrich, and Joshua Sunshine

For an incremental transition to Rust to be effective, developers need a high-performance tool
for finding aliasing bugs in multi-language applications. We will provide these capabilities with
BorrowSanitizer: an LLVM-based dynamic instrumentation tool for detecting violations of Rust’s
Tree Borrows [21] aliasing model. It is currently an early-stages of development, and it is not yet
functional. Our primary goal is to develop a production-ready tool that comprehensively supports
interoperation between Rust, C, and C++. Our ongoing work is open source and publicly available.1

DESIGN PRINCIPLES
BorrowSanitizer (BSAN) is an LLVM-based sanitizer. It is seamlessly integrated into the Rust and
LLVM toolchains, and it uses the same interfaces as existing sanitizers. Users can enable Bor-
rowSanitizer directly by providing configuration flags, but we have also created a Cargo plugin (e.g.
cargo bsan ) that prepares an instrumented version of Rust’s standard library. This plugin will
intercept invocations of Clang and the Rust compiler to enable BorrowSanitizer and automatically
handle cross-language link-time optimization. When BSAN is enabled, our modified Rust compiler
will insert special “retag” instructions as LLVM intrinsic functions (e.g. @llvm.retag ). Under
Tree Borrows, retags are inserted to update the permission of a reference when it is created or
passed into a function. Our retag intrinsics will capture all of the Rust-specific type information
that we need to detect aliasing violations at the LLVM level. We will not modify Clang, aside from
adding BSAN to the list of supported sanitizers.
Aside from retags, all other run-time checks will be inserted by an LLVM pass. This pass will

replace retag intrinsics with calls into our runtime library, and it will add additional run-time
instrumentation for tracking the provenance of each pointer. Like Miri, our provenance metadata
will consist of an allocation identifier and a borrow tag, which links each pointer to its permission
under Tree Borrows. We will store provenance metadata in a disjoint memory space consisting of a
shadow stack and a two-level directory table [16]. This preserves the memory layout of the source
program to allow for ABI compatibility with uninstrumented libraries. Inspired by the lock-and-key
approach of CETS [15], we will detect aliasing violations by comparing a pointer’s provenance
with the values stored in a "lock" location associated with each memory allocation. The lock will
contain a copy of the allocation identifier, the base and bounds of the allocation, and a pointer to a
collection of the data structures used by Tree Borrows to store the state of the tree. Our run-time
checks will pass through LLVM’s sanitizer runtime interface into an external library implemented
in Rust. This will allow us to reuse Miri’s existing implementation of Tree Borrows.

Our core motivation is to provide the Rust community with a usable tool for detecting aliasing
violations across language boundaries. We also intend for BorrowSanitizer to support future
research on static analysis techniques and fuzzing heuristics. Like Miri, our initial prototype will
conservatively check all memory accesses for undefined behavior. However, recent results from
Braunsdorf et al. [4] indicate that eliding sanitizer checks from safe components can significantly
increase performance. Prior work has demonstrated that the gradual typing methodology [6] can
be applied to dataflow analysis [5]. It may also be effective in this context for leveraging the partial,
static information from the borrow checker to soundly remove run-time checks from applications
with unsafe components. We also predict that test inputs which cause programs to access the same
allocations on both sides of a foreign function boundary will be more likely to trigger aliasing
violations. We can observe these behaviors at run time to create heuristics that could direct a
coverage-guided fuzzer toward these execution paths [2]. We are proposing this talk to gather
requirements from potential users in the Rust community and to obtain feedback on our design in
support of these future research efforts.

1borrowsanitizer.com

https://borrowsanitizer.com


BorrowSanitizer 3

REFERENCES
[1] Jen Engel Alex Rebert, Chandler Carruth and Andy Qin. 2024. Safer with Google: Advancing Memory Safety. Google.

https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html
[2] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury. 2017. Directed Greybox Fuzzing. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (Dallas, Texas, USA) (CCS
’17). Association for Computing Machinery, New York, NY, USA, 2329–2344. https://doi.org/10.1145/3133956.3134020

[3] Keaton Brandt. 2022. Data-driven performance optimization with Rust and Miri. https://medium.com/source-and-
buggy/data-driven-performance-optimization-with-rust-and-miri-70cb6dde0d35

[4] Oliver Braunsdorf, Konrad Hohentanner, and Johannes Kinder. 2024. Poster: EnsuringMemory Safety for the Transition
from C/C++ to Rust. In Network and Distributed System Security Symposium (San Diego, CA) (NDSS ’24). Internet
Society, Geneva, Switzerland, 3 pages. https://www.ndss-symposium.org/wp-content/uploads/ndss24-posters-37.pdf

[5] Sam Estep, Jenna Wise, Jonathan Aldrich, Éric Tanter, Johannes Bader, and Joshua Sunshine. 2021. Gradual Program
Analysis for Null Pointers. arXiv:2105.06081 [cs.PL] https://arxiv.org/abs/2105.06081

[6] Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting gradual typing. SIGPLAN Not. 51, 1 (Jan. 2016),
429–442. https://doi.org/10.1145/2914770.2837670

[7] Ossi Heralla and Jerome Froelich. 2021. CVE-2021-45720. MITRE. https://www.cve.org/CVERecord?id=CVE-2021-45720
[8] Sandra Höltervennhoff, Philip Klostermeyer, Noah Wöhler, Yasemin Acar, and Sascha Fahl. 2023. “I wouldn’t want

my unsafe code to run my pacemaker”: An Interview Study on the Use, Comprehension, and Perceived Risks of
Unsafe Rust. In 32nd USENIX Security Symposium (USENIX Security 23). USENIX Association, Anaheim, CA, 2509–2525.
https://www.usenix.org/conference/usenixsecurity23/presentation/holtervennhoff

[9] Jesse Howarth. 2020. Why Discord is Switching from Go to Rust. Discord. https://discord.com/blog/why-discord-is-
switching-from-go-to-rust

[10] Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. 2019. Stacked borrows: an aliasing model for Rust. Proc.
ACM Program. Lang. 4, POPL, Article 41 (Dec. 2019), 32 pages. https://doi.org/10.1145/3371109

[11] Christoph Kern. 2024. Secure by Design at Google. Technical Report. Google Security Engineering.
[12] Felix S. Klock and Bryan Garza. 2023. Krabcake: A Rust UB Detector. https://pnkfx.org/presentations/krabcake-rust-

verification-2023-april.pdf
[13] Felix S. Klock and Bryan Garza. 2023. Umbrella repository for Krabcake experiments. https://github.com/pnkfelix/

krabcake-vg
[14] Ian McCormack, Joshua Sunshine, and Jonathan Aldrich. 2024. A Study of Undefined Behavior Across Foreign Function

Boundaries in Rust Libraries. arXiv:2404.11671 [cs.SE] Will appear in the 2025 International Conference on Software
Engineering (ICSE).

[15] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. 2010. CETS: compiler enforced temporal
safety for C. In Proceedings of the 2010 International Symposium on Memory Management (Toronto, Ontario, Canada)
(ISMM ’10). Association for ComputingMachinery, New York, NY, USA, 31–40. https://doi.org/10.1145/1806651.1806657

[16] Nicholas Nethercote and Julian Seward. 2007. How to shadow every byte of memory used by a program. In Proceedings
of the 3rd International Conference on Virtual Execution Environments (San Diego, California, USA) (VEE ’07). Association
for Computing Machinery, New York, NY, USA, 65–74. https://doi.org/10.1145/1254810.1254820

[17] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavyweight dynamic binary instrumentation.
SIGPLAN Not. 42, 6 (June 2007), 89–100. https://doi.org/10.1145/1273442.1250746

[18] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo Fernandes, and João Saraiva. 2021.
Ranking programming languages by energy efficiency. Science of Computer Programming 205 (2021), 102609. https:
//doi.org/10.1016/j.scico.2021.102609

[19] Rust Team. 2025. Miri. https://github.com/rust-lang/miri
[20] Valgrind Developers. 2024. Valgrind User Manual. https://valgrind.org/docs/manual/manual.html
[21] Neven Villani, Derek Dreyer, and Ralf Jung. 2023. Tree Borrows. https://github.com/Vanille-N/tree-borrows/blob/

master/full/main.pdf
[22] Guido Vranken and Alex Crichton. 2023. CVE-2023-30624. MITRE. https://www.cve.org/CVERecord?id=CVE-2023-

30624

https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html
https://doi.org/10.1145/3133956.3134020
https://medium.com/source-and-buggy/data-driven-performance-optimization-with-rust-and-miri-70cb6dde0d35
https://medium.com/source-and-buggy/data-driven-performance-optimization-with-rust-and-miri-70cb6dde0d35
https://www.ndss-symposium.org/wp-content/uploads/ndss24-posters-37.pdf
https://arxiv.org/abs/2105.06081
https://arxiv.org/abs/2105.06081
https://doi.org/10.1145/2914770.2837670
https://www.cve.org/CVERecord?id=CVE-2021-45720
https://www.usenix.org/conference/usenixsecurity23/presentation/holtervennhoff
https://discord.com/blog/why-discord-is-switching-from-go-to-rust
https://discord.com/blog/why-discord-is-switching-from-go-to-rust
https://doi.org/10.1145/3371109
https://pnkfx.org/presentations/krabcake-rust-verification-2023-april.pdf
https://pnkfx.org/presentations/krabcake-rust-verification-2023-april.pdf
https://github.com/pnkfelix/krabcake-vg
https://github.com/pnkfelix/krabcake-vg
https://arxiv.org/abs/2404.11671
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/1254810.1254820
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1016/j.scico.2021.102609
https://doi.org/10.1016/j.scico.2021.102609
https://github.com/rust-lang/miri
https://valgrind.org/docs/manual/manual.html
https://github.com/Vanille-N/tree-borrows/blob/master/full/main.pdf
https://github.com/Vanille-N/tree-borrows/blob/master/full/main.pdf
https://www.cve.org/CVERecord?id=CVE-2023-30624
https://www.cve.org/CVERecord?id=CVE-2023-30624

	Abstract
	References

