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ABSTRACT
Modern software applications routinely integrate many third-party
open source dependencies, with packagemanagers delivering timely
updates of the entire dependency tree. The downside is that mali-
cious actors can inject malicious code into widely-used software
packages, which is then distributed to potentially thousands of
direct or indirect client applications. Such attacks on the software
supply chain are no longer just theoretical curiosities, but a prac-
tical risk. To mitigate this risk, we propose a new approach using
differential static analysis to flag malicious code modifications in
package updates. We use specifications in the CodeQL query lan-
guage to match suspicious behavior and compare results across
package versions. Where we detect an anomalous change in behav-
ior, we classify that package update as potentially malicious and
requiring further analysis. We show that our approach successfully
identifies all malicious versions on a dataset of packages with a
history of malicious code; on a dataset of popular benign packages
from the npm repository, we obtain on average 1.4% false alarms,
demonstrating that our approach holds promise for practical de-
ployment as a warning system on the open source software supply
chain.

CCS CONCEPTS
• Security and privacy →Malware and its mitigation; • Soft-
ware and its engineering→ Automated static analysis.
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1 INTRODUCTION
Open source software is an essential part of modern software de-
velopment, with software vendors increasingly relying on open
source libraries and frameworks to reduce costs and increase re-
liability [1, 29]. The distribution, integration and maintenance of
open source software dependencies is streamlined by package man-
agers, which are available for most programming languages. These
package managers like npm1 for JavaScript, PyPI2 for Python, or
NuGet3 for the .NET framework, provide a practical interface for in-
stalling, updating, and distributing software as packages in a matter
of seconds.

Unfortunately, this open infrastructure also presents a broad
attack surface tomalicious actors. Once uploaded through a package
manager, either as a new package or as an update to an existing
one, malicious code can enter the software supply chain and be
integrated into legitimate applications that include that package as
a dependency. The potential impact of a compromised package is
amplified by the large number of direct and indirect dependencies
in a typical software project. In a study on npm, Zimmermann et
al. [33] found that the average npm package implicitly trusts 79
third-party packages and 39 maintainers due to these (transitive)
dependencies.

There have now been multiple instances of attacks on the soft-
ware supply chain through package managers, in particular npm.
An infamous example is the case of event-stream [2], where an
attacker used social engineering to gain access to the package devel-
opment, which was mostly in the hands of a single maintainer. After
taking over the maintenance of the package, the attacker eventually
integrated a new dependency; this dependency was later updated
to malicious code stealing funds from a specific crypto-currency
wallet. Because the malicious behavior was only performed un-
der specific circumstances, detection of the attack was hampered.
Another example, especially illustrating the problem of numerous
dependencies, is represented by the attack on the npm package
ua-parser-js in 2021 [7], which is downloaded several million
times a week. The attacker uploadedmalicious versions that directly
targeted the developer machines by installing a crypto-currency
miner and a credential stealer. The package comes with over 1,000
direct dependents, meaning packages that could have been affected
by the attack. Similarly, the package eslint-scope was targeted
by an attack through a compromised maintainer account [32]. The
malware introduced in a malicious update was directly aimed at
the users of the package, with the ultimate goal to exfiltrate their
access tokens from a npm configuration file.

1https://www.npmjs.com/
2https://pypi.org/
3https://www.nuget.org/
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There is a growing awareness for this problem, and open source
projects for core infrastructure are increasingly safeguarding their
development and distribution processes. Package managers en-
courage reporting of suspicious packages4, and there are recurring
reports by Sonatype [24], Snyk [11] and JFrog [23] claiming to
have found up to several thousand malicious packages each month.
Evidence is mounting of an arms race between malicious code and
detection mechanisms, not unlike that seen in traditional malware
distributed in binary form. New malware has to be manually ana-
lyzed and classified, before patterns or signatures for detection are
rolled out.

In this paper, we propose a proactive approach for detecting ma-
licious code injections based on detecting new, anomalous behavior
with static analysis. In particular, we propose a differential static
analysis using the CodeQL specification language to detect malware
in JavaScript packages hosted in npm. We focus on the previously
outlined attack type where an existing benign package is targeted
by a malicious actor. Our ultimate goal is to provide a monitoring
mechanism for security analysts and developers to detect poten-
tially malicious package updates in their package dependencies.
Leveraging datasets [12, 21] of malicious packages used in known
real-world supply chain attacks, we develop a set of CodeQL specifi-
cations that express generally suspicious behavior, abstracting from
specific implementation details. The presence of these behaviors on
their own does not necessarily imply malicious intent in the pack-
age. On each package update, however, we decide whether it may
be malicious. To this end, we differentiate the new and old versions
using our set of CodeQL queries. Significant changes in the result
will then cause the package to be flagged for inspection, guided
by the details in the analysis report. We evaluate our approach on
(i) a dataset of npm packages with a history of at least one known
malicious version and (ii) a dataset of popular packages, which we
presume to be benign. We show that our approach successfully
detects all attacks, while achieving a 1.4% false positive rate across
6,361 versions of 25 widely-used benign packages. In summary, we
make the following contributions:

• We define a set of queries specifying suspicious behavior in
Node.js using the CodeQL query language. These queries
cover a wide range of behaviors, including usually benign
but potentially dangerous behaviors (§3).

• We propose a differential static analysis approach to detect
potentially malicious package updates by using CodeQL
queries to identify suspicious changes in code behavior (§4).
The results can be presented to security analysts in the form
of a detailed analysis report that highlights the reasons for
the new alarms.

All of our code, queries, and results are available as open source,
and we provide information for reconstructing the dataset from
publicly available sources.5

2 STATIC ANALYSIS WITH CODEQL
CodeQL6 is a semantic code analysis engine developed by GitHub.
It is designed to help developers discover vulnerabilities in software

4https://docs.npmjs.com/threats-and-mitigations#uploading-malicious-packages
5https://github.com/lmu-plai/diff-CodeQL
6https://codeql.github.com/

by querying the codebase as if it were a database. Ideally one could
develop and apply a query to find all variants of a given vulnerabil-
ity, effectively eliminating similar occurrences of that error from
a project. While supporting a range of programming languages
(like C, C++, Go, Java, JavaScript, Python, Ruby, among others), it
offers a static code analysis framework sophisticated enough to cap-
ture behavioral features from an application’s source code. CodeQL
generates a relational database composed of multiple intermediate
representations of the codebase, including the abstract syntax tree
(AST), control flow graph (CFG), and data flow graph [4]. Each
language has its own unique database schema that defines the rela-
tions used to create a database, and there is a specific extractor to
produce the relational data for each supported language. Addition-
ally, CodeQL provides libraries with language-specific classes that
add an abstraction layer over the database tables and greatly assist
in writing language-specific queries.

The queries for CodeQL are written in the specially-designed
object-oriented query language QL [4, 10]. While QL is semanti-
cally a dialect of Datalog including classes, subtyping, and dynamic
dispatch, its syntax is inspired by SQL to provide a familiar ap-
pearance to non-expert users. The query language enables users
to detect even non-value-preserving data flows, where static taint
tracking extends this analysis with steps that propagate information
between tainted nodes. When applying a query against a database,
CodeQL computes a set of result tuples containing the relevant
information from the involved tables. For a more concrete example,
one could define a data flow query for malware detection and obtain
as result a triple of source node location, sink node location, and
alert message corresponding to the finding.

The alert messages generated by CodeQL consist mainly of two
parts, the source code location responsible of the match and de-
scriptive information about the finding. Based on the kind of issue
that needs to be detected there are two type of queries. Alert queries
simply highlight a specific code location related to the issue, while
Path queries display the complete flow of data between the spec-
ified source and sink involved in the issue. The query results are
interpreted by CodeQL, based on the queries’ metadata properties,
to provide meaningful and user-friendly reports.

CodeQL is a mature commercial framework, and we employ it in
this work for its flexibility, scalability, and robustness. Initially, we
use CodeQL to capture suspicious behavior seen in known supply
chain attacks by defining general behavior queries; later, we use
differences in results to detect potentially malicious package up-
dates. Our implementation of the custom queries for this approach
is streamlined by existing libraries and classes provided by the
framework. For example, it is straightforward to directly query all
source code locations that perform a request in a JavaScript package
by simply using the ClientRequest class defined in the corresponding
language library.

3 BEHAVIOR SPECIFICATIONS
We now show how to use CodeQL to specify a range of sensitive
or suspicious behaviors in code. We group queries according to
behavior classes (§3.1) and illustrate them following a real-world
example (§3.2).

https://docs.npmjs.com/threats-and-mitigations#uploading-malicious-packages
https://github.com/lmu-plai/diff-CodeQL
https://codeql.github.com/
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3.1 Classes of Behavior
We implement queries ranging from simply identifying the use of
eval function to complex data flow queries that recognize potential
data exfiltration, e.g. to detect sensitive data flowing to a network
API function. The overall goal of the queries is to capture general
suspicious behavior, which is often exhibited by malicious code. At
the same time, the presence of a single type of suspicious behavior
does not necessarily mean that a package is malicious. For instance,
eval is used for benign purposes in several frameworks.

Apart from our knowledge of common suspicious or unwanted
behavior, we use the malware datasets by Ohm et al. [21] and Duan
et al. [12] as a foundation for creating the queries. Altogether, we im-
plemented 41 behavior queries in CodeQL that can be summarized
in the following categories:

(1) Network queries detect the usage of client requests or the
flow from data to a network function, with the goal of iden-
tifying backdoor servers and attempts of data exfiltration.

(2) Process queries specify code that executes an operating
system command, such as spawning a new process. These
queries can detect the insertion of reverse shells as well as
the abuse of system resources, such as for crypto-currency
miners.

(3) File access queries focus on operations used to access sys-
tem or user files and their associated data flows. They identify
the usage of sensitive files in the context of data exfiltration
and denial-of-service attacks.

(4) Obfuscation queries detect code transformation techniques
employed by the attacker to hide the malicious intentions
of the package. Detected techniques include the popular
JavaScript Obfuscator7 and JSFuck8.

(5) Metadata queries are a collection of queries focusingmainly
on the package.json file of an npm package to detect the
addition of new dependencies and suspicious installation
scripts. The latter ones are often leveraged by malware au-
thors to trigger themalicious behavior as soon as the package
is installed.

(6) Code generation queries detect dangerous functions like
eval or vm.runInContext, which can be employed to dy-
namically generate and execute code.

3.2 Example
To illustrate the application of the queries, Listing 1 presents the sim-
plified source code of the npm package conventional-changelog
version 1.1.24, including the malicious update that has been added
in version 1.2.0. This package is part of the evaluation dataset and
serves as a typical example of a malicious change to an existing
package. The benign code of Listing 1, representing version 1.1.24,
sets up a function called conventionalChangelog that serves as
a wrapper for the core module of conventional-changelog and
facilitates the loading of certain options and config values. Finally, it
exports the function conventionalChangelog, making it available
for use in other JavaScript files. It does not contain any suspicious
or malicious parts.

7https://github.com/javascript-obfuscator/javascript-obfuscator
8https://github.com/aemkei/jsfuck

1 var core = require('core');

2 var loader = require('loader ');

3
4 var executor = require(’child_process’).spawn;

5 var encScript = "cm0gLXJmIC90bXAvLm...";

6 var decScript = Buffer.from(encScript, ’base64’).toString();

7
8 function conventionalChangelog(options , context , gitOpts ,

↩→ parserOpts , writerOpts) {

9 options.warn = options.warn || function () {};

10
11 executor(decScript, [],

{shell:true,stdio:’ignore’,detached:true}).unref();

12
13 if (options.preset) {

14 try {

15 options.config = loader(options.preset.toLowerCase ());

16 } catch (err) {

17 options.warn('Preset: "' + options.preset + '" does not

↩→ exist ');

18 }

19 }

20
21 return core(options , context , gitOpts , parserOpts , writerOpts

↩→ );

22 }

23
24 module.exports = conventionalChangelog;

Listing 1: Adapted source code of conventional-changelog,
versions 1.1.24 and 1.2.0 (highlighted).

However, in version 1.2.0, certain malicious code lines were
added, highlighted in red in Listing 1. The malicious actor added a
code line to spawn a child_process, a Base64 encoded string con-
taining a script and a following code line that immediately decodes
the script to another string. Additionally, a part was inserted in the
conventionalChangelog function to execute the contents of the
decoded string as a shell script, when the function is used. While
not visible in the code, the ultimate goal of the script, which is now
executed as part of the conventional-changelog initialization,
is the startup of a crypto-currency miner and therefore stealing
computational resources from the victim.

Our specifications of suspicious behavior contain several CodeQL
queries that are able to flag parts of the malicious code of this
example. One query simply flags the import and usage of the
child_process; dataflow queries detect the data flow from the
decScript string to the argument of the executor that is spawn-
ing a process. Another query detects the decode operation of the
string containing the script before flowing to the execution of a pro-
cess. As an example, Listing 2 displays the shorter CodeQL query
for detecting data flow from a string to the execution of a system
command.

The query of Listing 2 is based on a data flow taint tracking
class, provided by CodeQL, to perform customized taint tracking
from a custom set of sources to a custom set of sinks. It provides
the ability to recognize taint propagation through objects, arrays,
promises and strings. In a first step, the isSource predicate of
the query is looking for all string literals in the source code that
could be a starting point for the data flow. In the next step, the
isSink predicate is identifying all arguments of system command
executions that could represent a sink for the data flow. Finally,
by the from ... where ... select ... statement, all data flows from
the defined string literal sources to the system command execution

https://github.com/javascript-obfuscator/javascript-obfuscator
https://github.com/aemkei/jsfuck
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1 class DataFlowConfiguration extends TaintTracking::

↩→ Configuration {

2 // Detect string literals flowing to command execution

3 DataFlowConfiguration () { this = "DataFlowConfiguration" }

4
5 override predicate isSource(DataFlow::Node source) {

6 source.asExpr () instanceof StringLiteral

7 }

8
9 override predicate isSink(DataFlow::Node sink) {

10 exists( SystemCommandExecution c

11 | sink = c.getACommandArgument ()

12 )

13 }

14 }

15
16 from DataFlowConfiguration cfg,

17 DataFlow::PathNode source ,

18 DataFlow::PathNode sink

19 where cfg.hasFlowPath(source , sink)

20 select sink.getNode (),

21 source ,

22 sink,

23 "Dataflow from string ($@) to system command execution /

↩→ process ($@)"

Listing 2: CodeQL query to detect flow from a string literal
to a process execution argument.

sinks will be selected and produce alerts about the locations where
this flow is recognized.

While the query shown in Listing 2 is able to flag parts of the
malicious behavior of the conventional-changelog example from
Listing 1, it would also flag this pattern in non-malicious contexts.
Therefore, executing this query on one package version might
generate numerous findings in various files, making it difficult to
focus on the actual suspicious cases and requiring unnecessary
manual reviewing effort.

4 DIFFERENTIAL STATIC ANALYSIS
We now introduce our approach based on differential static analysis
to single out suspicious changes to the behavior of a package that
would be introduced by an update. We first give an overview of
the main idea (§4.1) before discussing how to assign severity scores
(§4.2) and providing details and examples of how the reports are
compared (§4.3).

4.1 Overview
By themselves, specifications of suspicious behavior can success-
fully flag certain code patterns often used in a malicious context.
However, they will also match many benign code parts, e.g., legiti-
mate packages for sending information across the network, starting
processes, or frameworks making use of eval. For this reason, we
propose a differential static analysis that focuses on changes in
specified behavior. The key idea is, for each update, to compare the
matches of behavior specifications between two different versions.
Firstly, we apply all CodeQL queries to each package version and
collect the results. After that, we compare the results of the two ver-
sions against each other to determine the differences. Consequently,
we can differentiate between existing findings that are present in
both versions and new findings caused by the more recent package
version. The new findings represent the suspicious code changes

of a certain package update and therefore reducing our query re-
sults to the relevant findings. Finally, these findings will be used
to determine whether a certain package version will be marked as
potentially malicious and presented in a differential report.

4.2 Severity Scores
For the determination of a potential malicious version, our approach
requires the assignment of a severity score to each query. Our scor-
ing system is based on the CodeQL definition for security severity
levels that allows a severity score in the range from 0.0 to 10.0 [16].
The initial severity levels for the behavior queries of this approach
are based on our knowledge of existing malicious code as well as
the frequency of certain code patterns in a malicious context of the
malware datasets [12, 21]. However, we stress that these are param-
eters of our approach that may have to be adapted over time. After
the application of the queries to the code of the package versions,
the distinct severities of the findings will be summed up to a score
that is compared to a predefined threshold, indicating whether a
certain package version is flagged as suspicious or not.

For these reasons, the threshold used by the analysis and the
severity score of each query are parameters in our tool, and they
can be adjusted based on the needs of the user. In case of monitoring
npm, it is clear that while a higher threshold would lead to fewer
false positives, it might also miss a malicious update. At the same
time, in more security critical environments, it would be worth to
set up a lower threshold to reduce the risk of overlooking one, at
the cost of a higher number of flagged updates. In situations where
a certain type of behavior is particularly dangerous, the users could
tweak the severity score of individual queries to adapt the tool to
their requirements. An exhaustive evaluation to find the optimal
parameters based on different use cases is planned as future work.

4.3 Comparing Findings
The comparison of two versions to identify changes in the findings
is based on the query alert message provided by CodeQL that must
contain the relevant suspicious code. We try to match findings
with the same alert message, taking into account the file path of
the finding. This allows us to compute the differences between
two versions and store them in a file used for the final report.
Meanwhile, we do not consider the exact code locations in a source
file so that we do not falsely flag a warning as new just because
the line numbers have changed across versions. Changes that are
reflected in the relevant excerpt of the suspicious code will lead to
a new finding in our report. While we can identify and report the
code locations of new findings with a unique alert message for a
file, we do not attempt to determine the locations of new findings
with an alert message that is already existing for a certain file in
the previous version.

For instance, the finding set of the differential report for the
conventionalchangelog example from the benign version 1.1.24
to the malicious version 1.2.0 would contain the following ab-
stracted findings:

(1) Import of the child_process module.
(2) Spawning a new process as a shell script with executor(...).
(3) Usage of the Buffer class to decode a Base64 encoded string.
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(4) Encoded string "cm0gLXJmIC90bXAvLm ..." flows to argument of
process execution.

(5) Encoded string "cm0gLXJmIC90bXAvLm ..." flows to decoding op-
eration and then to argument of process execution.

These findings are the result of the newly added malicious code
of Listing 1 and would lead to the successful flagging of this update
as potentially malicious. At the same time, our approach would,
for example, not match any import and use of the child_process
module that was already present in the previous package version
1.1.24 of conventional-changelog. Therefore, the differential
static analysis is able to focus on suspicious updates and to provide
reports of the corresponding relevant findings.

Lastly, even if a certain scanned package version is receiving a
high severity score, it still is required to be manually checked for
its real maliciousness. This applies to all flagged packages. Hence,
the presented differential approach in this paper is not meant as
fully automated classification of malicious packages but instead to
provide the users, such as security experts or developers, with a tool
to support them in the detection and evaluation of suspicious and
potentially malicious packages updates. While still manual work
is required, the goal is to decrease the amount of time an expert
has to invest in the malware detection. For that, the reports of
the differential static analysis provide a quick overview of flagged
versions as well as details and location of the findings, enabling
further decision-making.

In conclusion, our prototype tool for differential static analysis
performs the following steps:

(1) Considering two consecutive versions of a given package,
downloads and unpacks both of them from the package reg-
istry.

(2) Generates the corresponding CodeQL database for each pack-
age version.

(3) Applies the entire set of CodeQL queries to both databases
to compute a results file per package version containing all
the queries findings.

(4) Compares the consecutive package versions results files in
an attempt to identify suspicious behavioral changes, which
are going to be included in the differential report.

(5) Computes a score for the update and compares it against a
threshold, to either flag it as potentially malicious or not.

(6) Generates a differential report file containing the results for
the compared versions with descriptive information about
the findings and their corresponding locations.

5 EVALUATION
The following evaluation serves the purpose of assessing the per-
formance of our approach by answering two research questions:

(1) Is the approach able to detect malicious package updates?
(2) Will the approach produce a manageable amount of false

positives, i.e., benign package versions flagged as suspicious?
To evaluate those questions, we first test the differential static

analysis including the 40 previously defined behavior queries on
a dataset of nine packages, each containing one malicious ver-
sion (§5.1). Second, we evaluate the approach on a dataset of 25
popular npm packages, assumed to be benign (§5.2). The severity of
each query is defined according to §4.2. We use a severity threshold

Package Name Avg. LOC Versions #Flagged FP Found

pm-controls 90,930 159 4 1.9 !

conventional-changelog 550 98 1 0.0 !

ua-parser-js 958 65 2 1.6 !

rpc-websocket 2,844 34 1 0.0 !

kraken-api 179 20 1 0.0 !

eslint-scope 2,289 18 1 0.0 !

vue-backbone 718 4 1 0.0 !

getcookies 91 3 1 0.0 !

flatmap-stream 93 3 1 0.0 !

Table 1: Differential static analysis results of npm packages
withmalicious update(s).Avg. LOC shows the average number
of line of codes across versions; Versions shows the number
of scanned package versions, Flagged the number of those
flagged as malicious, with the percentage of false positives
shown in FP. Found indicates whether the truly malicious
version was flagged.

of 10 for flagging a package update as potentially malicious. This is
based on the fact that it corresponds to the highest possible severity
value of a finding, such that a single finding of the highest severity
will suffice to flag a package version. Note that, while the severities
of the findings of the queries are summed up, each query is only
counted once, even if it has several matches.

5.1 Detecting Malicious Updates
Table 1 displays the results of the approach for the dataset of pack-
ages with one malicious version per package. In particular, we can
see that each malicious update was flagged successfully by the
approach for the specified severity threshold. Meanwhile, in the
packages pm-controls and ua-parser-js, four of the flagged up-
dates were false positives. While these are promising results for
our approach, the dataset of malware is relatively small and con-
sists of known malware. We believe that researchers in the area of
software supply chain security would benefit from more systematic
archiving of malicious updates; as of now, any detected malware
is eliminated from the version history of a package, or the entire
package is locked. In future work, we plan to implement continuous
monitoring of packages to improve data collection.

5.2 Benign Updates
The goal of our approach is to aid security experts in verifying that
a given package update is harmless. When detecting a potentially
malicious update, we generate a differential report with compre-
hensive information that clearly identifies the pieces of source code
responsible for the match, allowing the users of our tool to quickly
decide if action is needed. Because of that, an overly sensitive tool
would not be an effective solution to detect potentially malicious
updates. For further evaluation on how many alerts our approach
would generate for packages presumed to be benign, we apply our
approach to a second dataset consisting of 25 popular npm pack-
ages. The results of this experiment, presented in Table 2, illustrate
that 89 of the 6,361 scanned versions contained in the dataset were
flagged as potentially malicious. Therefore, we achieved an overall
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rate of 1.4% for false alarms. In the worst case, the package vue
led to a flag rate of around 8.1%, where a total of 36 versions were
identified as potentially malicious. Overall, 12 out of 25 packages
(48%) had at least one update flagged as suspicious.

The scanned popular packages belong to the most used and
depended-upon packages of the npm registry, while presenting
diverse functionalities of the JavaScript programming language and
its APIs; including widely used frameworks like react, vue, and
express. Therefore, the results can be seen as a first impression of
how well the differential static analysis would perform in practice
and what to expect in terms of manual work for reviewing the
results. A real deployment of such a system would ideally become
a community effort, with independent public reviews of flagged
updates to reduce the burden for each user. Note that we are as-
suming all flagged package updates in this dataset to be benign
without manually verifying the findings. Considering that these
packages receive millions of downloads a week, have thousands of
dependents, and there is no publicly known malicious update, we
only leveraged these packages to measure the positive rate of our
approach. In practical deployment, a security expert would simply
manually verify the pieces of source code identified in the generated
differential report of a given suspicious update of a package.

In conclusion, the evaluation revealed that the differential analy-
sis approach can successfully be used to detect malicious updates
based on the predefined behavior queries, while keeping a low, and
therefore manageable, rate of false positives.

6 DISCUSSION
This paper presents results from work in progress, evaluating the
idea of relying on pre-existing static analysis tools for detecting
anomalous behavior. Accordingly, there are a number of limitations
and open questions.

6.1 Novel Attacks
Being based on a set of behavioral specifications, the differential
analysis cannot detect behavior that is not yet captured by a query.
As a result, we will not flag updates that exhibit a completely new
type of malicious behavior. Experienced attackers could exploit this
fact and use knowledge of the queries to circumvent the differential
analysis. For instance, a new type of obfuscation technique not yet
captured by a query could currently evade detection. However, we
argue that it is straightforward to implement and integrate addi-
tional behavior queries to our analysis, strengthening the detection
capabilities of the approach in the process. While this does not elim-
inate the arms race in malicious code detection, the broad scope
of each behavioral query means that a single query can eliminate
an entire class of malicious behavior, in contrast to signature-based
approaches.

6.2 Threats to Validity
The datasets used for developing the behavior queries [12, 21]
include some of the malicious versions detected in our first ex-
periment. Therefore, our evaluation dataset was not completely
independent of the dataset we used to learn the behavioral queries.
This is a consequence of the scarcity of data and would only be
addressed by collecting andmaking available more data on software

Package Name Dependents Avg. LOC Versions #Flagged FP

lodash 175,464 30,928 114 0 0.0
react 111,903 12,746 1,430 5 0.3
axios 107,908 6,137 81 2 2.5
tslib 103,551 618 42 0 0.0
chalk 99,112 533 38 1 2.6
react-dom 81,743 120,575 1,398 9 0.6
commander 75,420 1,942 100 0 0.0
express 72,894 3,653 262 5 1.9
vue 70,008 46,092 444 36 8.1
moment 65,247 51,585 71 3 4.2
fs-extra 61,098 1,066 93 0 0.0
uuid 55,808 1,122 36 0 0.0
request 55,180 2,561 122 0 0.0
prop-types 54,712 1,595 24 0 0.0
inquirer 48,058 2,485 139 0 0.0
debug 47,916 766 64 0 0.0
classnames 40,391 225 26 0 0.0
yargs 34,803 2,418 250 1 0.4
async 33,081 6,016 91 4 4.4
bluebird 32,147 10,256 223 1 0.4
glob 29,106 1,918 131 0 0.0
webpack 27,868 47,729 824 14 1.7
mkdirp 23,239 480 42 1 2.4
underscore 22,926 5,386 48 0 0.0
colors 21,296 864 24 0 0.0

Table 2: Differential static analysis results of popular npm
packages. Dependents shows the number of packages that
depend on the package; with the remaining column names
as in Table 1.

supply chain attacks. As the queries were designed to capture gen-
eral suspicious behavior and are not describing specific malicious
packages, we believe the effect to be small.

6.3 Language Ecosystem
Finally, we want to emphasize that while we focused on JavaScript
packages, it is straightforward to replicate our approach for other
language ecosystems. As long as CodeQL supports the program-
ming language, it is possible to leverage a malware dataset to de-
velop new queries that capture suspicious behavior for it. For in-
stance, this makes it possible to apply our approach to packages
from other package managers, like PyPI or RubyGems, leveraging
the same datasets [12, 21] of malicious updates for the query devel-
opment. Furthermore, our approach does not rely on a packaging
system and the granularity of the versions is irrelevant, meaning
it is possible to execute the differential analysis on any kind of
software version control as long as one properly configures how to
collect the versions of a given software application (where these
could be commits from a GitHub project, or even directories with
source code files stored locally). As said before, a security analyst
could set up this approach as a monitoring mechanism to verify if
a given update of a dependency is potentially malicious, by auto-
matically applying the analysis to the latest available version of it
and, in case of an alert, manually checking the source code snippets
identified in the generated differential report.
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6.4 Performance of CodeQL
An exhaustive evaluation of the performance and scalability of the
static analysis framework is planned as future work. Considering
that the approach is designed to monitor the dependencies of a
software application, where these could grow over time, the perfor-
mance of CodeQL when analyzing a database is vital. To guarantee
that our approach scales, we need to study the time to create and
query each generated database, while also considering the space
needed to store them.

7 RELATEDWORK
We now discuss several areas of related work, covering analysis
of supply chain attacks (§7.1), malware detection (§7.2 and §7.3),
general attack mitigations (§7.4), differential analysis (§7.5), and
other related applications of CodeQL (§7.6).

7.1 Software Supply Chain Attacks
A starting point for an overview about the latest supply chain at-
tacks on open source software is the work by Ohm et al. [21] who
gathered and analyzed a dataset of 174 malicious packages. While
the majority of samples in the dataset belong to the category of
typosquatting attacks, the second most common attack is targeting
existing packages. In conclusion, the analysis provides information
about the target of the attacks, their primary objective, the state of
triggering their malicious behavior as well as common obfuscation
techniques. One interesting supply chain attack that was target-
ing the package event-stream is examined in detail by Arvanitis
et al. [2]. In another work, Zimmermann et al. [33] carried out a
large-scale analysis of the npm ecosystem, focusing on the security
risks and threats associated with its open nature and the high num-
ber of dependencies. Additionally, they propose several mitigation
techniques such as trusted package maintainers and code vetting
pipelines to reduce the risk of malicious code injections. Bagmar
et al. [5] performed a similar extensive analysis of the PyPI ecosys-
tem. To help developers avoid potential supply chain attacks when
including a package dependency into their applications, Zahan et al.
[31] define weak link signals for the npm registry.

7.2 Malware Detection
With growing awareness of the previously described threats and
risks, more methods and concepts are being proposed to address the
issue of dealing with an increasing amount of malware in registries.
One remarkable approach combining several methods is presented
by Duan et al. [12]. Their vetting pipeline is a combination of meta-
data analysis with common static and dynamic analysis techniques.
Based on manual heuristic rules, the results of the pipeline are
classified as suspicious or not. The suspicious packages are then
manually checked to determine if they are malicious. While run-
ning this pipeline on over one million packages, the approach could
successfully detect malicious packages in PyPI, npm and RubyGems.
Similar to our approach, the static analysis of the vetting pipeline is
looking for specific suspicious behavior in the usage of JavaScript
APIs as well as sensitive data flows. Anomalicious [17] detects
malicious updates in open source software but relies only on the
analysis of metadata of GitHub repositories. For this, different fac-
tors representing properties of a commit or contributor like outlier

change properties, sensitive files, file history, pull requests and
contributor trust are computed and evaluated. While being able to
flag malicious commits in a test dataset, it was not evaluated in a
real world scenario. Scalco et al. [25] implement a tool to detect
discrepancies between the source code of an npm package and its
corresponding repository. The motivating idea is that the source
code of a project could be tampered with in the build process by a
malicious actor, who could inject malware into the resulting artifact
that is released as a package update.

7.3 Malware Detection with Machine Learning
Besides that, there also exist detection approaches employing ma-
chine learning techniques. Garrett et al. [15] proposed a method to
use unsupervised learning based on clustering to detect anomalies
in npm package updates that could indicate malicious changes. The
selected features for the anomaly detection are the native libraries
of Node.js that provide access to the network, file system or operat-
ing system processes and are commonly used by malware. While
potentially being able to reduce the reviewing effort of package
updates and successfully detecting an already known malicious
package example, the approach requires further evaluation to ex-
amine the usefulness on a large scale. Another technique closely
related to this method is AMALFI, described by Sejfia and Schäfer
[26]. The approach also uses machine learning to flag potential ma-
licious packages in npm but incorporates additional features such as
access to personally-identifying information, use of specific APIs as
well as the presence of minified code and binary files. Furthermore,
it checks for flagged packages if they can be rebuilt from its source
repository, indicating the package is probably not malicious. It
also features a simple textual-clone-detection technique to identify
copies of malicious packages that were not flagged by the classifier
before to reduce the number of false negatives. While scanning
nearly 100,000 package versions during one week, AMALFI was
able to detect 95 previously unknown malware samples.

7.4 Mitigation
In contrast to the detection techniques, there also exist approaches
that are more actively trying to prevent the execution of malware.
One of these methods which focuses on the common usage of code
obfuscation by attackers is developed by Xu et al. [30]. The intro-
duced tool called JStill is mostly using static techniques such as
function invocation-based analysis to identify essential characteris-
tics of obfuscated malicious code and directly prevent its execution
in browsers, meaning this tool is targeting deployed JavaScript
code on web pages rather than code during the development pro-
cess. With Mininode another tool is shown by Koishybayev and
Kapravelos [18] to more actively prevent the usage of malicious
code. The main idea of this static analysis tool is to measure and re-
move unused code and dependencies of Node.js applications, while
also restricting access to built-in modules for file system access
or network functionality. With this, a significant reduction of the
attack surface can be achieved for a package. Additionally, Ferreira
et al. [14] introduced a lightweight permission system for npm,
which effectively sandboxes individual packages to restrict the ac-
cess to security-relevant resources like the file system, network
APIs or metaprogramming constructs. This can be done because
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many Node.js applications rather do simple computations and do
not rely on these security-critical functionalities. It is claimed that
this least-privilege approach can protect 32% of all packages while
coming with a negligible overhead. Similar to this system, Ohm
et al. [22] prevent the execution of updated malicious code which
requires unusual capabilities. By statically analyzing the source
code of a package and its dependencies, the approach automatically
infers the minimal set of modules required for the software to run
and enforces that restriction during runtime.

7.5 Differential Code Analysis
Focusing on the differential aspect of comparing the results of static
code analysis tools, one of the first approaches was presented by
Spacco et al. [28]. They implemented a technique to track software
defects by matching same findings over several versions, with the
motivation of learning about their occurrence and disappearance for
deriving trends and patterns. A similar method has been developed
by Avgustinov et al. [3], where they try to track changes in code
quality over different software versions by determining new and
fixed violations of static code analysis results. However, their main
goal is attributing these changes to individual developers for their
awareness and subsequent elimination of those defects. Finally,
Dunlap et al. [13] proposed a Differential Alert Analysis (DAA),
using the results of static code analysis tools on different software
versions, for detecting fixed vulnerabilities. It is meant to support
the documentation of vulnerabilities, especially of those not publicly
disclosed, improving the software supply chain security.

7.6 Applications of CodeQL
Lastly, the static analysis tool CodeQL that we are using in our
approach was already successfully applied in multiple scenarios.
Shcherbakov et al. [27] use it to detect code constructs in the core
APIs of Node.js leading to remote code execution vulnerabilities.
Chow et al. [9] combine static analysis and machine learning, in a
bimodal taint analysis, to detect potentially vulnerable data flows in
JavaScript projects. Bandara et al. [6] define an automatic technique
which enables the study of vulnerability management in GitHub
repositories. Furthermore, Mantovani et al. [20] included CodeQL in
a set of SAST tools to evaluate their abilities to detect vulnerabilities
in code of decompiled binaries; while Brito et al. [8] did it for
JavaScript code and Lipp et al. [19] for C code.

8 CONCLUSION
We presented a new differential static analysis approach to support
the detection of malicious package updates. In order to achieve
this, we implemented behavior specifications as CodeQL queries to
identify suspicious or sensitive code behavior. We compared this be-
tween two package versions for determining potentially malicious
changes. While conceptually being language-agnostic, we focused
on npm packages in this work and evaluated the approach on a set
of packages with a knownmalicious version as well as a set of popu-
lar packages, presumed to be benign. The differential approach was
able to detect every malicious version successfully, while keeping a
manageable 1.4% rate of false positives. Consequently, even though
further evaluation on a larger number of packages is required, this

indicates our extendable method is capable of helping security ex-
perts and developers in the detection of malicious updates and to
defend against attacks on the software supply chain.
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