
Are Machine Learning Models for Malware Detection Ready for
Prime Time?

Lorenzo Cavallaro ∣ University College London, United Kingdom
Johannes Kinder ∣ Bundeswehr University Munich, Germany
Feargus Pendlebury ∣ University College London, United Kingdom
Fabio Pierazzi ∣ King’s College London, United Kingdom

In academic research onmalware
detection, machine learning-based
techniques have become the de-facto
standard. Over the years, many pa-
pers have been published on the
topic, using everything in the ma-
chine learning toolbox from tradi-
tional models [1, 2] to more recent
neural network architectures [3, 4,
5]. With published accuracies and
other performance numbers regu-
larly close to the 100% mark, you
could not be blamed for thinking
that the problem is practically solved.
Why would anyone be interested
in continuing to use malware signa-
tures and simple patterns?

Cannot Reproduce?

Yet, practitioners find themselves dis-
illusioned when trying to put ma-
chine learning models from research
into practice. In real-world deploy-
ments, machine learning-based mal-
ware classifiers are known to often
be unreliable and are not trusted to
act as the main line of defense.

Where does this discrepancy
come from? It would be too easy
to shrug this off as expected techn-
cal challenges in technology trans-
fer; we must get to the bottom of
the issue or risk exacerbating the
reproducibility crisis decried in ma-
chine learning-based science [6]. So,
what’s the deal? If the same model
performs so differently in produc-
tion, then the lab settings that yield
near-perfect performance must not

be representative of how such mod-
els are deployed.

The typical research project on
machine learning-based malware de-
tection goes as follows: (1) obtain a
malware dataset, from an academic
project or public sources; (2) col-
lect a dataset of benign software,
e.g., through scraping repositories
or app stores; (3) engineer or learn
features to represent the malicious
and benign apps in your datasets;
and (4) train a classifier while fol-
lowing common good-practice guide-
lines, for instance to prevent over-
fitting [7]. Unfortunately, this
seemingly straightforward approach
comes with several pitfalls that may
prevent your results from translating
to practice [8, 9].

The first and maybe the most
obvious issue is that performance
metrics are influenced by the rela-
tive sizes of the classes, i.e., the ra-
tio of malware to benign software
in the evaluation dataset. To illus-
trate, imagine a silly malware detec-
tion model that classifies everything
as malware. If your dataset consists
of 95% malware and 5% benign soft-
ware, then the model’s performance
will actually be quite decent! Widely
used performance metrics are pre-
cision, recall, and 𝐹1—the harmonic
mean of the two. With precision
being the fraction of true malware
in everything the classifier detected
as malware, we would get to a re-
spectable 95%, because only 5% of

the detections would be false. Recall
is the percentage of actual malware
detected, which would even be a per-
fect 100%. The 𝐹1 then comes out
at an impressive 97%, although the
model is completely useless in prac-
tice. Now, this may be an extreme
example, but the effect is gradual and
gets worse the more the class ratio
at testing time differs from the class
ratio in the real world. This effect
of misrepresenting the ratio between
classes is also known as the Base Rate
Fallacy [10]. In most practical set-
tings, there is vastly more benign
software than malware, making real
datasets heavily imbalanced toward
the benign class. A classifier that is
good at detecting malware but mis-
classifies much benign software as
malicious therefore has poor perfor-
mance in practice. When tested on
equal amounts of malware and be-
nign software, or even on a majority
of malware, its performance will be
inflated.

A second issue is that, as a re-
sult of the dataset collection proce-
dure, malicious and benign software
datasets often end up being from sep-
arate time periods. It is not unusual
for malware datasets to be several
years old (the Drebin dataset [1] of
Android malware from August 2010
to October 2012 is still commonly
used today), while software scraped
from app stores will be current. Be-
cause of this, they may differ in file
formats, metadata, compiler versions



or the API methods used. A machine
learning model trained to optimally
separate the two classes is then very
likely to pick up on these spurious
non-causal differences instead of just
the actual malicious behavior. After
all, if the easiest way to distinguish
the old malware from the new be-
nign applications is to look for the
presence of some deprecated permis-
sion, then this is what the model will
learn.

The third issue is also due to in-
consistent dates in the ordering of
samples. The canonical way to train
and evaluate a model is to first ran-
domly split the dataset into a training
set and a test set [9]. The model is
trained on the training set and eval-
uated against the test set. However,
a model’s performance on randomly
chosen training and testing sets is
not necessarily representative of its
performance in practice! Because the
partitioning is random, the training
set can contain samples that would
not have been available to learn from
at the time it would have first en-
countered the samples in the test set.
For instance, a randomly chosen test
set can contain older versions of mal-
ware contained in the training set.
This way, the classifier is allowed
to learn from future knowledge that
would not be available in realistic set-
tings.

In other domains, such as natu-
ral language processing, this effect is
not present or at least much less pro-
nounced. There, past and future sam-
ples can bemixed, because the under-
lying data distribution from which
the samples are drawn is mostly sta-
ble, as human language only changes
slowly. In themalware detection con-
text, the distribution of the samples
changes relatively quickly. In fact,
this phenomenon is common in secu-

rity settings and is in part fueled by
human attackers acting in an adver-
sarial fashion [8, 11, 12]. Not only do
newer malware samples use newAPI
methods, their authors also actively
try to circumvent detection and mit-
igation mechanisms and adapt their
strategies accordingly. The resulting
change in the distribution is known
as dataset shift or adversarial drift,
depending on the context. It makes
any performance assessments partial
and leaves us in uncharted territory
when trying to understand the actual
performance a system will deliver in
practice.

We can do better

If we wish to estimate more accu-
rately the performance of a malware
classifier in a practical deployment,
we have to model the experiments
after reality. Of course, nothing can
replace observing the performance
of a system in production, but the
best we can do in a lab setting is use
the data we have to simulate how the
system would have fared in practice
against the malware that appeared in
the past, replaying any dataset shifts
that occurred.

First, we must ensure that the
class ratio between our benign and
malicious classes at test time mim-
ics the one seen at deployment time.
This means that researchers must
have a reasonable understanding of
what to expect “in the wild”: will 50%
of the applications seen be malicious,
or rather 10%? In fact, this kind of
understanding of the real-world en-
vironment is not just necessary for
configuring the experimental setup,
but also of great benefit when design-
ing the approach in the first place.
This lends yet more importance to
an open exchange between practi-

tioners and academics in the field.
Do note, however, that one is free to
choose different class ratios at train-
ing time. While a realistic class ra-
tio at training time will minimize
the overall error rate (the fraction of
misclassifications over all samples),
other ratios can be used to move the
decision boundary and hence trade
off the likelihood of false positives
against that of false negatives [8].

Second, malware and goodware
have to come from the same time
frame, otherwise the classifier will
pick up non-causal artifacts as dis-
criminative features. This is no
easy task, as datasets of malware are
treated as trade secrets by IT-security
firms, and benign software may not
be readily available from past time
periods or at all; this is true in par-
ticular for paid apps in closed source
environments.

Notably, the easy availability of
standard datasets has been one of
the drivers in applications of ma-
chine learning to domains such as im-
age recognition and natural language
processing. If we are serious about
advancing research in machine learn-
ing for security, we need to make
high quality datasets publicly avail-
able. Only then can new generations
of PhD students easily try out new
ideas and compare approaches objec-
tively.

The AndroZoo project [13] is a
great example of such an effort. It
provides access to over 20millionAn-
droid applications, both benign and
malicious, from a time span of over
ten years, and continues to be con-
tinuously updated. For the Windows
platform, the SOREL [14] dataset
contains pre-extracted features and
metadata for 20 million PE files, half
benign and half malicious. Unfortu-
nately, it is typically not allowed to

2



4 8 12 16 20 24

Testing period (month)

Recall (gw)
Precision (gw)
F1 (gw)
Recall (mw)
Precision (mw)
F1 (mw)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Figure 1: Performance decay in several metrics of a malware detection model trained at month 1 when evalu-
ated against the new malware and benign software of each month, for 24 months (adapted from Pendlebury et
al. [8]). Performance numbers are shown both for detecting malware (mw) and for detecting benign software
(gw—goodware, in light colors), respectively. The shaded area under the 𝐹1 curve for malware detection is the
AUT, measuring robustness against decay.

freely redistributeWindows binaries,
so SOREL has full binary files only
for malware.

Having a dataset of timestamped
malware and benign applications
also allows us to avoid the third pit-
fall mentioned above: if the machine
learning model should be used for
proactive malware detection, i.e., de-
tecting new malware as it comes in,
then your training data should not
be newer than your test data. For
instance, this is a typical setting for
a malware detector deployed at an
app store that scans newly uploaded
applications. Known malware may
effectively be detected using signa-
tures, so classifier performance on
older specimens may be less relevant
in practice. We can model this setup

in an experiment through a sliding
window of test data, using only appli-
cations with an earlier timestamp as
training data [8]. Interestingly, this
also allows us to evaluate how a clas-
sifier trained at a certain time in the
past would have performed on the
new malware as it comes in.

Performance Degradation

Once deployed, a trained malware
classifier will degrade in perfor-
mance over time if it is not regularly
retrained [12, 11]. This is a result
of the aforementioned dataset shift,
due to malware and in fact all appli-
cations changing over time, as ma-
licious strategies and the available
APIs change.

A setup as described above, and
detailed by Pendlebury et al. [8], can
evaluate how the performance of
classifiers of interest would have de-
graded in the past after some deploy-
ment date. Figure 1 shows the re-
sults for the Drebin classifier trained
on a dataset containing apps up to
December 2016. The classifier was
tested 24 times against the new mal-
ware appearing each month, to cover
a period of two years up to Decem-
ber 2018. The lines show how the
various metrics decline, with the 𝐹1
score on the malware class being the
most commonly used metric for this
type of work. Depending on the
activity of individual malware cam-
paigns, performance can rise tem-
porarily, but the overall downward

3



trend is clearly visible. From the plot
we can also see that all performance
metrics are much higher on the ma-
jority class, that is, the classifier con-
tinues to do a relatively good job
in identifying most benign software.
This is expected in an imbalanced
setting and reaffirms the importance
of picking the class ratios correctly.
This type of plot lets us visualize the
performance over time. For easier
comparison, we can also capture the
time-related decay in a single num-
ber: the AUT (area under time) is the
area under the 𝐹1 curve and provides
a measure of the classifiers’ robust-
ness against dataset shifts.

A classifier has to be maintained
just like any other detection mech-
anism. For a machine learning clas-
sifier, this essentially amounts to re-
training, possibly incrementally. De-
signing a retraining strategy that
trades off costs for labeling, train-
ing, and possibly model distribution
against performance degradation is
a subtle problem. We can equip clas-
sifiers with a rejection option to al-
low them to defer classification of
a particular sample due to it being
an outlier with respect to the known
classes [11]. This allows the system
to identify drift and trigger retrain-
ing.

Looking Forward

There is still much research to be
done in the area, despite the host of
available publications. We now have
a better understanding of the per-
formance of machine learning mod-
els for malware detection and re-
lated security tasks. With the appro-
priate precautions described above
and fleshed out in recent work [8,
9, 6], the deployment and main-
tenance of machine learning-based

classifiers is promising yet still a
delicate matter [7]. For instance,
the right abstractions to approximate
program semantics, detecting and
dealing with dataset shifts [11], the
costs of labeling in retraining and
risks in online learning strategies,
and defenses from realizable adver-
sarial attacks [15], are just some of
the open research questions our com-
munity must deal with going for-
ward.

References

[1] D. Arp, M. Spreitzenbarth, M.
Hubner, H. Gascon, and K. Rieck.
DREBIN: Effective and Explain-
able Detection of Android Mal-
ware in Your Pocket. In: Annu.
Network and Distributed System
Security Symposium (NDSS). In-
ternet Society, 2014.

[2] L. Onwuzurike, E. Mariconti,
P. Andriotis, E. D. Cristofaro,
G. J. Ross, and G. Stringhini.
MaMaDroid: Detecting Android
Malware by Building Markov
Chains of Behavioral Models (Ex-
tended Version). In: ACM Trans.
Priv. Secur. 22(2) (2019), 14:1–
14:34.

[3] K. Grosse, N. Papernot, P.
Manoharan, M. Backes, and P.
McDaniel. Adversarial examples
for malware detection. In: Euro-
pean Symp. Research in Computer
Security (ESORICS). Springer.
2017, pp.62–79.

[4] E. Raff, J. Barker, J. Sylvester,
R. Brandon, B. Catanzaro, and
C. K. Nicholas. Malware detec-
tion by eating a whole EXE. In:
AAAI Workshop on Artificial In-
telligence for Cyber Security. 2018.

[5] K. Pei, Z. Xuan, J. Yang, S. Jana,
and B. Ray. Trex: Learning execu-
tion semantics from micro-traces
for binary similarity. In: arXiv
preprint arXiv:2012.08680 (2020).

[6] S. Kapoor and A. Narayanan.
Leakage and the Reproducibility
Crisis in ML-based Science. In:
arXiv preprint arXiv:2207.07048
(2022).

[7] J. Saxe and H. Sanders. Malware
Data Science: Attack Detection
and Attribution. No Starch Press,
2018.

[8] F. Pendlebury, F. Pierazzi, R. Jor-
daney, J. Kinder, and L. Cavallaro.
TESSERACT: Eliminating exper-
imental bias in malware classi-
fication across space and time.
In: USENIX Security Symposium.
2019, pp.729–746.

[9] D. Arp, E. Quiring, F. Pendle-
bury, A. Warnecke, F. Pierazzi, C.
Wressnegger, L. Cavallaro, and
K. Rieck. Dos and don’ts of ma-
chine learning in computer secu-
rity. In: USENIX Security Sympo-
sium. 2022.

[10] S. Axelsson. The base-rate fallacy
and the difficulty of intrusion de-
tection. In: ACM Trans. on Infor-
mation and System Security (TIS-
SEC) 3(3) (2000), 186–205.

[11] F. Barbero, F. Pendlebury, F. Pier-
azzi, and L. Cavallaro. Transcend-
ing Transcend: Revisiting Mal-
ware Classification in the Pres-
ence of Concept Drift. In: IEEE
Symp. Security and Privacy (S&P).
IEEE, 2022.

[12] J. G. Moreno-Torres, T. Raeder,
R. Alaíz-Rodríguez, N. V. Chawla,
and F. Herrera. A unifying view
on dataset shift in classification.
In: vol. 45. 1. 2012, pp.521–530.

[13] K. Allix, T. F. Bissyandé, J. Klein,
and Y. Le Traon. AndroZoo: col-
lecting millions of Android apps
for the research community. In:
Proc. Int. Conf. Mining Software
Repositories (MSR). ACM, 2016,
pp.468–471.

[14] R. Harang and E. M. Rudd.
SOREL-20M: A large scale bench-
mark dataset for malicious PE
detection. In: arXiv preprint
arXiv:2012.07634 (2020).

4



[15] F. Pierazzi, F. Pendlebury, J.
Cortellazzi, and L. Cavallaro. In-
triguing properties of adversarial
ml attacks in the problem space.
In: IEEE Symp. Security and Pri-
vacy (S&P). IEEE. 2020, pp.1332–
1349.

Biographies

Lorenzo Cavallaro is Full Profes-
sor of Computer Science at Univer-
sity College London (UCL), London
WC1E 6BT, United Kingdom, where
he leads the Systems Security Re-
search Lab. His research focuses
on understanding and improving the
effectiveness of machine learning
methods for systems security in the
presence of adversaries. In particu-

lar, Lorenzo and his lab investigate
the intertwined relationships of pro-
gram analysis and machine learning
and the implications they have to-
wards realizing Trustworthy ML for
Systems Security.

Johannes Kinder is a Professor
of Computer Science at Bundeswehr
University Munich, 85577 Neubiberg,
Germany. He heads the PATCH lab
for Program Analysis, Transforma-
tion, Comprehension and Hardening
and is a member of the Research In-
stitute CODE and the Institute for
Systems Security at the Department
of Computer Science.

Feargus Pendlebury is a Vis-
iting Scholar at University College

London, London WC1E 6BT, United
Kingdom. His expertise focuses
on developing machine learning
techniques for hostile environments
where adversaries seek to evade de-
tection.

Fabio Pierazzi is a Lecturer
(Assistant Professor) in Computer
Science, and Deputy Head of the
Cybersecurity group at the Depart-
ment of Informatics of King’s Col-
lege London, London WC2R 2LS,
United Kingdom. His research inter-
ests are at the intersection of systems
security and machine learning, with
a particular emphasis on settings in
which attackers adapt quickly to new
defenses.

5


