
Everything Old is New Again: Binary Security of WebAssembly

Daniel Lehmann
University of Stuttgart

Johannes Kinder
Bundeswehr University Munich

Michael Pradel
University of Stuttgart

Abstract
WebAssembly is an increasingly popular compilation target
designed to run code in browsers and on other platforms safely
and securely, by strictly separating code and data, enforcing
types, and limiting indirect control flow. Still, vulnerabilities
in memory-unsafe source languages can translate to vulnera-
bilities in WebAssembly binaries. In this paper, we analyze to
what extent vulnerabilities are exploitable in WebAssembly
binaries, and how this compares to native code. We find that
many classic vulnerabilities which, due to common mitiga-
tions, are no longer exploitable in native binaries, are com-
pletely exposed in WebAssembly. Moreover, WebAssembly
enables unique attacks, such as overwriting supposedly con-
stant data or manipulating the heap using a stack overflow. We
present a set of attack primitives that enable an attacker (i) to
write arbitrary memory, (ii) to overwrite sensitive data, and
(iii) to trigger unexpected behavior by diverting control flow
or manipulating the host environment. We provide a set of
vulnerable proof-of-concept applications along with complete
end-to-end exploits, which cover three WebAssembly plat-
forms. An empirical risk assessment on real-world binaries
and SPEC CPU programs compiled to WebAssembly shows
that our attack primitives are likely to be feasible in practice.
Overall, our findings show a perhaps surprising lack of binary
security in WebAssembly. We discuss potential protection
mechanisms to mitigate the resulting risks.

1 Introduction

WebAssembly is an increasingly popular bytecode language
that offers a compact and portable representation, fast ex-
ecution, and a low-level memory model [32]. Announced
in 2015 [19] and implemented by all major browsers in
2017 [65], WebAssembly is supported by 92% of all global
browser installations as of June 2020.1 The language is de-
signed as a compilation target, and several widely used compil-
ers exist, e.g., Emscripten for C and C++, or the Rust compiler,

1https://caniuse.com/#search=WebAssembly

both based on LLVM. Originally devised for client-side com-
putation in browsers, WebAssembly’s simplicity and general-
ity has sparked interest to use it as a platform for many other
domains, e.g., on the server side in conjunction with Node.js,
for “serverless” cloud computing [33–35, 64], Internet of
Things and embedded devices [31], smart contracts [44, 53],
or even as a standalone runtime [4, 23]. WebAssembly and
its ecosystem, although still evolving, have already gathered
significant momentum and will be an important computing
platform for years to come.

WebAssembly is often touted for its safety and security. For
example, both the initial publication [32] and the official web-
site [12] highlight security on the first page. Indeed, in Web-
Assembly’s core application domains, security is paramount:
on the client side, users run untrusted code from websites in
their browser; on the server side in Node.js, WebAssembly
modules operate on untrusted inputs from clients; in cloud
computing, providers run untrusted code from users; and in
smart contracts, programs may handle large sums of money.

There are two main aspects to the security of the WebAs-
sembly ecosystem: (i) host security, the effectiveness of the
runtime environment in protecting the host system against
malicious WebAssembly code; and (ii) binary security, the
effectiveness of the built-in fault isolation mechanisms in
preventing exploitation of otherwise benign WebAssembly
code. Attacks against host security rely on implementation
bugs [16, 59] and therefore are typically specific to a given
virtual machine (VM). Attacks against binary security—the
focus of this paper—are specific to each WebAssembly pro-
gram and its compiler toolchain. The design of WebAssembly
includes various features to ensure binary security. For exam-
ple, the memory maintained by a WebAssembly program is
separated from its code, the execution stack, and the data struc-
tures of the underlying VM. To prevent type-related crashes
and attacks, binaries are designed to be easily type-checked,
which they are statically before execution. Moreoever, WebAs-
sembly programs can only jump to designated code locations,
a form of fault isolation that prevents many classic control
flow attacks.

https://caniuse.com/#search=WebAssembly

Buffer overflow on
unmanaged stack

FORTIFY_SOURCE

Safe unlinking, etc.

Heap metadata
corruptionStack overflow of

unmanaged stack

Stack canaries

Page protections

ASLR

Stack data, even
of caller(s)

Statically init.
“constants”

1.
 W

ri
te

 P
ri

m
it

iv
e

Wasm-type-based CFI

Heap data

Redirect indirect calls

Critical host functions:
eval(), exec(), fwrite(), ...

Manged, safe
return addresses

✓

2.
 O

ve
rw

ri
te

 D
at

a
3.

 M
al

ic
io

us

Ac
ti

on

Unmapped pages

Figure 1: An overview of attack primitives () and (missing)
defenses () in WebAssembly, later detailed in this paper.

Despite all these features, the fact that WebAssembly is
designed as a compilation target for languages with manual
memory management, such as C and C++, raises a question:
To what extent do memory vulnerabilities affect the security
of WebAssembly binaries? The original WebAssembly paper
addresses this question briefly by saying that “at worst, a
buggy or exploited WebAssembly program can make a mess
of the data in its own memory” [32]. A WebAssembly design
document on security [1] concludes: “common mitigations
such as data execution prevention (DEP) and stack smashing
protection (SSP) are not needed by WebAssembly programs.”

This paper analyzes to what extent WebAssembly binaries
can be exploited and demonstrates that the above answers
miss important security risks. Comparing the exploitabil-
ity of WebAssembly binaries with native binaries, e.g., on
x86, shows that WebAssembly re-enables several formerly
defeated attacks because it lacks modern mitigations. One
example are stack-based buffer overflows, which are effective
again because WebAssembly binaries do not deploy stack
canaries. Moreover, we find attacks not possible in this form
in native binaries, such as overwriting string literals in sup-
posedly constant memory. If such manipulated data is later
interpreted by critical host functions, e.g., as JavaScript code,
this can lead to further system compromise. Our work mostly
focuses on binaries compiled with LLVM-based compilers,
such as Emscripten and Clang for C and C++ code, or the Rust
compiler, since they are currently the most popular compilers
targeting WebAssembly.

After our analysis of the deployed (and missing) security
features in WebAssembly, we take the position of an active
adversary and identify a set of attack primitives that can later
be used to build end-to-end exploits. Our attack primitives
span three dimensions: (i) obtaining a write primitive, i.e.,

the ability to write memory locations in violation of source-
level semantics; (ii) overwriting security-relevant data, e.g.,
constants or data on the stack and heap; and (iii) triggering a
malicious action by diverging control flow or manipulating
the host environment. Figure 1 provides an overview of the
attack primitives and defenses discussed.

To show that our attack primitives are applicable in practice,
we then discuss a set of vulnerable example WebAssembly
applications and demonstrate end-to-end exploits against each
one of them. The attacked applications cover three different
kinds of platforms that support WebAssembly: browser-based
web applications, server-side applications on Node.js, and
applications for stand-alone WebAssembly VMs.

In our quantitative evaluation, we then estimate the fea-
sibility of attacks against other binaries. We collect a set of
binaries from real-world web applications and compiled from
large C and C++ programs of the SPEC CPU benchmark
suite. Regarding data-based attacks, we find that one third of
all functions make use of the unmanaged (and unprotected)
stack in linear memory. Regarding control-flow attacks, we
find that every second function can be reached from indirect
calls that take their target directly from linear memory. We
also compare WebAssembly’s type-checking of indirect calls
with native control-flow integrity defenses.

Our work improves upon initial discussions of WebAssem-
bly binary security in the non-academic community [20, 25,
28, 45] by providing a systematic analysis, a generalization
of attacks, and data on real binaries (see Section 8 for a more
detailed comparison).

Contributions In summary, this paper contributes:
• An in-depth security analysis of WebAssembly’s linear

memory and its use by programs compiled from lan-
guages such as C, C++, and Rust, which common mem-
ory protections are missing from WebAssembly, and how
this can make some code less secure than when compiled
to a native binary (Section 3).

• A set of attack primitives, derived from our analysis and
generalized from previous work, along with a discussion
of mitigations that the WebAssembly ecosystem does,
or does not, provide (Section 4).

• A set of example vulnerable applications and end-to-end
exploits, which show the consequences of our attacks on
three different WebAssembly platforms (Section 5).

• Empirical evidence that both data and control-flow at-
tacks are likely to be feasible, measured on WebAssem-
bly binaries from real-world web applications and com-
piled from large C and C++ programs (Section 6).

• A discussion of possible mitigations to harden WebAs-
sembly binaries against the described attacks (Section 7).
We make our attack primitives, end-to-end exploits, and
analysis tool publicly available2 to aid in this process.

2https://github.com/sola-st/wasm-binary-security

2

https://github.com/sola-st/wasm-binary-security

2 Background on WebAssembly

Since WebAssembly is still relatively new, we briefly give an
introduction to its syntax, execution model, and the ecosystem.
More comprehensive information is available in the official
documentation and specification [12, 14].

Overview WebAssembly is a binary format. The binaries
are designed to be compact and quick to parse. Unlike for x86,
static disassembly is simple and reliable. A human-readable,
exact text representation of binaries exists, called wat. Fig-
ure 2 shows a simple WebAssembly program. One module
corresponds to one file. A module contains functions, globals,
and at most one linear memory and indirect call table. Pro-
gram elements, such as functions or locals, are identified by
integer indices. For convenience, indices can be written as
$name in the text format, but those labels are lost in the binary.

WebAssembly bytecode is executed on a stack-based vir-
tual machine. Instructions pop their inputs from and push
their results to the implicit evaluation stack. There are no reg-
isters. Individual values can be stored in an unlimited number
of global variables, whose scope is the entire module, and
local variables, which are only visible to the current func-
tion. Functions cannot access local variables or the evaluation
stack of other functions, also not of their caller or callees. The
evaluation stack, globals, and locals are managed by the VM.

Types Unlike in most native architectures, WebAssembly
globals, locals, and the arguments and results of functions and
instructions are typed. Binaries are statically type-checked
before being executed. There are four primitive types: 32
and 64 bit integers (i32, i64) and single and double precision
floats (f32, f64). More complex types, such as arrays, records,
or designated pointers do not exist. Source-level types are
thus lowered to these primitive types during compilation.

Control-Flow Unlike native code or Java bytecode, Web-
Assembly has only structured control-flow. Instructions in
a function are organized into well-nested blocks. Branches
can only jump to the end of surrounding blocks, and only in-
side the current function. Multi-way branches can only target
blocks that are statically designated in a branch table. Unre-
stricted gotos or jumps to arbitrary addresses are not possible.
In particular, one cannot execute data in memory as bytecode
instructions. Many classical attacks are thus ruled out in Web-
Assembly, e.g., injecting shellcode or abusing unrestricted
indirect jumps, e.g., jmp *%reg in x86.

Indirect Calls To implement function pointers and virtual
functions, WebAssembly has indirect calls. Figure 3 illus-
trates how they work. The call_indirect instruction on the
left pops a value from the stack, which it uses to index into
the so called table section. Table entries map this index to a
function, which is subsequently called. Thus, a function can
only be indirectly called if it is present in the table. Functions

1 (module
2 ;; Import function from host environment.
3 (import "print" (func $print (param i32)))
4 ;; Global variable, 32-bit integer, initialized to 42.
5 (global $g i32 (i32.const 42))
6 ;; Function in the binary with type [i32] -> [i64].
7 (func $f (param $arg i32) (result i64)
8 (local $var i32) ;; Declaration of a local variable.
9 i32.const 8 ;; Push constant on stack.

10 local.get $arg ;; Copy function argument to stack.
11 i32.add ;; Pop inputs from stack, push result.
12 local.tee $var ;; Copy result to local variable.
13 if ;; Is top == 0?
14 i32.const 1024 ;; Pointer to string in memory.
15 call $print ;; Call imported function.
16 end ;; Structured control-flow.
17 local.get $var ;; Push local value as address for...
18 i64.load ;; ...8 byte read from linear memory.
19)
20 ;; Explicitly initialized memory at offset 1024.
21 (data (i32.const 1024) "some string\00"))

Figure 2: Example of a WebAssembly binary, represented in
the (slightly simplified) text format.

Instructions

table Section Functions (statically typed)

...
<push some value>
call_indirect [i32, i32] → []

0 1

1 2

2 (empty)

3 2

... ...

Table
index

(func $0 (param i32) (return i32)
code...

)
(func $1 (param) (return)

code...
)
(func $2 (param i32 i32) (return)

code...
)
...

Function
index

Target type,
statically encoded

Figure 3: Indirect function calls via the table section.

can be referenced multiple times in the table and not every
entry in the table must be filled. To ensure type-correctness,
the VM checks before executing the call that the target func-
tion is type-compatible with the statically declared type in the
indirect call instruction and aborts execution otherwise.

Linear, Unmanaged Memory In contrast to other byte-
code languages, WebAssembly does not provide managed
memory or garbage collection. Instead, the so called linear
memory is simply a single, global array of bytes. Load and
store instructions can access arbitrary addresses within the
currently allocated memory. The memory is addressed by
32-bit pointers, and i32 serves as the pointer type. A Web-
Assembly program can request the VM to increase the linear
memory with the memory.grow instruction. For efficient dy-
namic memory allocation, a WebAssembly program typically
includes its own allocator, which manages the linear memory,
e.g., by providing malloc and free to the program.

Host Environment WebAssembly modules are executed
in a host environment. Without the host environment, WebAs-
sembly programs cannot, for example, perform I/O or access
the network. Instead, such functionality is provided by the

3

host through functions that can be imported by the WebAs-
sembly module. In browsers, all APIs available to JavaScript-
based client-side web applications can be imported, such as
XmlHttpRequest, eval, or document.write. Other host environ-
ments are also emerging, e.g., Node.js for server-side applica-
tions, and stand-alone VMs, which provide their own APIs
to WebAssembly modules. For example, modules running
in Node.js may invoke exec to execute shell commands, and
modules running on a stand-alone VM may interact with the
local file system through the WebAssembly system interface
(WASI) [9]. Non-primitive data, e.g., strings or objects, must
be passed between host and WebAssembly module through
linear memory, which can be accessed by both.

Compilers and Tooling As a low-level bytecode, WebAs-
sembly is a compilation target for higher-level programming
languages. There are several compilers for different languages,
e.g., C, C++, Rust, Go, and AssemblyScript, and for differ-
ent host environments. In addition to the source program,
compilers also add their own, host-environment-specific im-
plementation of the standard libraries of the compiled lan-
guage. For example, when Emscripten compiles C code for
the browser, it will add JavaScript implementations such that
printf outputs to the browser console.

3 Security Analysis of Linear Memory

We now begin our security analysis of WebAssembly binaries
and focus first on one of their key components: linear memory.
We analyze how compilers arrange program data in linear
memory and investigate how and which standard memory
protection mechanisms are applied.

3.1 Managed vs. Unmanaged Data
We distinguish managed and unmanaged data in WebAssem-
bly. Managed data, i.e., local variables, global variables, val-
ues on the evaluation stack, and return addresses, reside in
dedicated storage handled directly by the VM. WebAssembly
code can only interact with managed data implicitly through
instructions, but not directly modify its underlying storage.
E.g., local.get 0 reads local 0, but at no point is the actual,
underlying address of the local visible to the program. Un-
managed data is all data that resides in linear memory. It is
completely under the control of the program and typically
organized by compiler-generated code.

There are several reasons for putting unmanaged data in
linear memory. Since WebAssembly has only four types and
because managed data can hold instances of only those primi-
tive types, all non-scalar data, such as strings, arrays, or lists,
must be stored in linear memory. Because managed data has
no address, any variable whose address is ever taken in the
source program, e.g., out parameters, must also be stored in
linear memory. Because many non-scalar types occur in the

...
Heap

(unused)

Stack

Data
0

grows

higher
addr.

Buffer
Over-
flow

(a) emcc 1.39.7
(fastcomp backend,
deprecated).

...
Heap

Stack

(unused)

Data
0

grows

higher
addr.

Buffer
Over-
flow

(b) emcc 1.39.7
(upstream backend),
clang 9 (WASI).

...
Heap

Data

Stack

(unused)
0

grows

higher
addr.

Buffer
Over-
flow

(c) clang 9 (WASI
with stack-first),
rustc 1.41 (WASI).

Figure 4: WebAssembly linear memory layouts for different
compilers and backends.

source program as function-scoped, global, or data with dy-
namic lifetime, the compiler creates areas for a call stack,
a heap, and static data in linear memory. We will refer to
the compiler-created call stack in linear memory as the un-
managed stack to distinguish it from the managed evaluation
stack, which holds intermediate values of instructions, and the
managed call stack, which holds locals and return addresses.
Importantly, this means a lot of data lies in unmanaged linear
memory, not under protection of the VM, but instead under
full control of memory write instructions in the program.

3.2 Memory Layout

Native ELF binaries3 contain sections for zero-initialized
data (.bss), read- and writable data (.data), read-only data
(.rodata), code (.text), a stack, and a heap. The compilers we
analyze, Emscripten, Clang, and Rustc, all perform a similar
subdivision of the linear memory in WebAssembly binaries
(Figure 4). The heap must always be placed at the end of
linear memory, such that it can grow towards higher addresses
and make use of additional memory when it is requested
from the host environment. Below the heap are the stack and
static data. Since there is no read-only memory in WebAssem-
bly (more on that in the next section), there is no distinction
between .data and .rodata, and since memory is always zero-
initialized, there is no need for a dedicated .bss section. In
other words, .data, .rodata, and .bss are not explicitly distin-
guished in WebAssembly. In the following, when we refer to
the data section in linear memory, we mean all such data that
is valid for the whole lifetime of the program, e.g., statically
initialized string constants, global arrays, or zero-byte ranges.

The memory layout, i.e., the order of stack, heap, and data
in linear memory, depends on the compiler. Figure 4a shows
that the fastcomp backend of Emscripten (the first WebAs-
sembly backend and thus frequently used until its deprecation
in October 2019 [8]) places the static data at the beginning
of linear memory, followed by the stack, and then the heap.
The stack grows upwards (i.e., towards higher addresses) in
this configuration. More recently, LLVM has gained its own,

3Other native binary formats, such as PE, have analogous sections, but for
readability we compare only with ELF here.

4

in-tree WebAssembly backend [70], which at the time of writ-
ing is used by Emscripten, Clang, and the Rust compiler. That
is, in most WebAssembly binaries produced today, the stack
grows downwards (similar to ARM and x86). The difference
between Figure 4b and 4c is in the relative order of stack and
data in linear memory. In Emscripten and Clang, static data
comes first by default. In Rust and in Clang with the linker
option -stack-first, the stack comes first and static data sits
between stack and heap.

3.3 Memory Protections
One of the most basic protection mechanisms in native pro-
grams is virtual memory with unmapped pages. A read or
write to an unmapped page triggers a page fault and termi-
nates the program, hence an attacker must avoid writing to
such addresses. WebAssembly’s linear memory, on the other
hand, is a single, contiguous memory space without any holes,
so every pointer ∈ [0,max_mem] is valid. As long as the at-
tacker stays within this bound, any read or write will succeed.
This is a fundamental limitation of linear memory with severe
consequences. Since one cannot install guard pages between
static data, the unmanaged stack, and the heap, overflows in
one section can silently corrupt data in adjacent sections. Sec-
tion 4 shows that buffer and stack overflows are thus very
powerful attack primitives in WebAssembly.

Virtual memory in native execution also allows to set page
protection flags, i.e., marking pages exclusively as readable,
writable, or executable. In WebAssembly, linear memory is
non-executable by design, as it cannot be jumped to. However,
WebAssembly does not allow marking memory as read-only;
instead, all data in linear memory is always writable. This
is another quite surprising limitation of linear memory and
enables one of our attack primitives in Section 4.

As an additional probabilistic defense in native execution,
address space layout randomization (ASLR) [51] randomly
arranges the stack, heap, and code in the address space at
runtime. For a successful attack, the attacker thus first has
to obtain a pointer, e.g., to the heap, via an information dis-
closure vulnerability. In WebAssembly, there is no ASLR.
WebAssembly linear memory is arranged deterministically,
i.e., stack and heap positions are predictable from the com-
piler and program. Even if one were to add some form of
ASLR to WebAssembly, linear memory is addressed by 32-
bit pointers, which likely does not provide enough entropy
for strong protection [58].

4 Attack Primitives

This section presents attack primitives that can be used to ex-
ploit vulnerabilities in code compiled to WebAssembly. The
attack primitives span three dimensions from which a full
attack can be constructed. The first dimension is about obtain-
ing a write primitive, i.e., the ability of an attacker to use a

vulnerability for unexpected writes to memory. The second di-
mension corresponds to the data that can be overwritten. The
third dimension is about triggering security-compromising
behavior by overwriting data. In principle, the primitives in
these three dimensions can be freely combined. For exam-
ple, a write primitive from the first dimension can overwrite
any data from the second dimension to trigger any kind of
misbehavior from the third dimension.

Figure 1 gives an overview of the three dimensions of at-
tack primitives () and mitigations designed to counter them
(). As discussed in detail in the following, many of the
standard mitigations used when compiling to native binaries
are unused or unavailable when compiling to WebAssembly
(shown by crossing out mitigations). Some of the attack prim-
itives described here are based on existing ideas for exploiting
vulnerabilities in C/C++ code compiled to native code. The
novelty lies in the way these attacks and existing mititations
transfer, or do not transfer, to WebAssembly. Other attack
primitives (e.g., Section 4.1.2 and 4.2.3) have never been pos-
sible in modern native systems with virtual memory and are
presented here for WebAssembly for the first time.

4.1 Obtaining a Write Primitive
Given a WebAssembly binary compiled from vulnerable C or
C++ code, there are several ways for an attacker to obtain a
write primitive. In particular, we discuss those types of attacks
for which there are effective mitigations on native platforms,
but not in WebAssembly.4

4.1.1 Stack-based Buffer Overflow

Stack-based buffer overflows have been widely exploited [50]
and, by now, there exist several mitigation techniques. We
show that, contrary to current beliefs, stack-based buffer over-
flows are exploitable in WebAssembly.

Figure 5 shows C code prone to overflow because line 9
fails to perform bounds checking. Figure 5b shows the stack
layout when compiling this code with a modern compiler to
x86. The stack contains local variables of the current function
(same_frame and buffer), local variables of parent functions
(parent_frame), saved registers (if any), and the return address.
An overflow of buffer could overwrite data on the stack, in
particular return addresses. However, modern compilers miti-
gate this kind of attack in several ways. To detect buffer over-
flows, compilers place stack canaries (or stack cookies) [24]
above local data. To minimize the data that could be over-
written, compilers also reorder local variables on the stack.
In many cases, the compiler can also prevent potential buffer
overflow vulnerabilities through semantics-preserving code
transformations. For example, the FORTIFY_SOURCE flag allows

4We do not discuss attack primitives that are possible in WebAssembly but
neither novel nor specific to this platform. E.g., integer overflows exist in
WebAssembly just as they do in x86 or ARM.

5

the compiler to replace strcpy with strncpy if the length of
the string is known.

Do stack-based buffer overflows affect WebAssembly? Be-
cause the WebAssembly VM isolates managed data, in par-
ticular, return addresses, it is tempting to get a strong (and
false) sense of security, as illustrated by the quote from Web-
Assembly’s official design document in Section 1. Yet, buffer
overflows can compromise data in WebAssembly because
parts of the function-scoped data in C is stored on the unman-
aged stack in the linear memory (Section 3.1).

Figure 5c illustrates the problem by showing the unman-
aged stack in linear memory (top), as well as the internal
state of the WebAssembly VM that stores the return addresses
of calls (bottom). While the VM-internal state is protected
against overwrites by the VM, the unmanaged stack is not.
Indeed, an overflow while writing into a local variable on
the unmanaged stack, e.g., buffer, may overwrite other local
variables in the same and even in other stack frames upwards
in the stack, e.g., parent_frame. Because overflows can also
write to data in the parent function (as we show above) and
even to other memory sections (as we show later), the prim-
itive is more powerful and the use of stack canaries more
important than previously realized [20, 45].

4.1.2 Stack Overflow

Another write primitive are stack overflows, which occur due
to excessive or infinite recursion or when a local buffer of
variable size is allocated on the stack, e.g., using alloca. If
an attacker controls the size of stack allocations, or provides
corrupted input data that violates internal assumptions of re-
cursive functions, she may trigger a stack overflow. For ex-
ample, recursive implementations of functions operating on
trees or lists often assume acyclicity; a cyclic data structure
passed to such a function can then lead to infinite recursion.

On most native platforms, stack overflows will cause the
program to crash as the stack grows into a special guard page
that separates the stack from other areas of memory. In Web-
Assembly, such protections do not exist for the unmanaged
stack, so an attacker-controlled stack overflow can be used
to overwrite potentially sensitive data following the stack
(Section 3.2).

4.1.3 Heap Metadata Corruption

Another primitive an attacker may use to write memory in
WebAssembly programs is to corrupt heap metadata of the
memory allocator shipped with a WebAssembly binary. Be-
cause in WebAssembly no default allocator is provided by
the host environment, compilers include a memory allocator
as part of the compiled program (Section 2). Since the Web-
Assembly module typically has to be downloaded from the
internet right before execution, the code size of the alloca-
tor is an important consideration. The Emscripten compiler

1 void parent() {
2 char parent_frame[8] = "BBBBBBBB"; // Also overwritten
3 vulnerable(readline());
4 // Dangerous if parent_frame is passed, e.g., to exec
5 }
6 void vulnerable(char* input) {
7 char same_frame[8] = "AAAAAAAA"; // Can be overwritten
8 char buffer[8];
9 strcpy(buffer, input); // Buffer overflow on the stack

10 }

(a) Vulnerable C program, overflowing buffer on the stack.

...

parent_frame

return address

stack canary

buffer

same_frame

rsp+8

rsp

Overflow
rsp+16

(b) Stack layout on x86-64
with canaries and reordering.

...

parent_frame

same_frame

buffer

$sp+8

$sp

Overflow

Unmanaged
stack in linear
memory:

VM state /
Managed data: ...

return address

(c) Unmanaged stack and VM
state in WebAssembly.

Figure 5: Example of a stack-based buffer overflow and its
exploitability in WebAssembly.

therefore lets developers choose between the default alloca-
tor, based on dlmalloc, and the simplified allocator emmalloc
that reduces the final code size. Similarly, Rust programs
can choose a more lightweight allocator when compiling to
WebAssembly, called wee_alloc.5

While standard allocators, such as dlmalloc, have been
hardened against a variety of metadata corruption attacks,
simplified and lightweight allocators are often vulnerable to
classic attacks. We find both emmalloc and wee_alloc to be
vulnerable to metadata corruption attacks, which we illustrate
for a version of emmalloc in the following.6

When deallocating a chunk of memory by calling free, al-
locators try to merge as many adjacent free chunks as possible
into a single larger one to avoid fragmentation. This gives
rise to the classical unlink exploit [18, 38] shown in Figure 6.
Since emmalloc is a first-fit allocator, it will return the first
chunk in the free list large enough to satisfy an allocation
request. Thus, two directly following allocation requests yield
two chunks adjacent to each other in memory, such as alloc1

and alloc2 in Figure 6a. Lines 1 to 9 of emmalloc’s source
code in Figure 6c show that the metadata of each chunk starts
with a bit indicating whether the current chunk is free or not,
the chunk’s size, a pointer to the preceding chunk, and finally
either the payload (raw bytes) or a FreeInfo struct, which in
a benign allocation makes that chunk part of a doubly linked
list of free chunks.

5https://github.com/rustwasm/wee_alloc
6Recently, emmalloc’s implementation was slightly changed, but it is still
vulnerable against this type of attack. We provide an exploit against the
newer version as well in our supplementary material.

6

https://github.com/rustwasm/wee_alloc

size prev payload size prev pay load

alloc1 alloc2

1used
bit

1

(a) Heap layout before the overflow: two adjacent chunks.

size prev payload size prev
FreeInfo

prev next

Fake free chunk

1

free bit

0

Overflow

un-
used value

Mirrored overwrite:

prev
+0

prev
+4

value

next

(b) Heap layout after an overflow of alloc1: manipulated
metadata causes mirrored write to a chosen location on free.

1 struct FreeInfo { FreeInfo* prev; FreeInfo* next; };
2 struct Chunk {
3 size_t used : 1; size_t size : 31;
4 Chunk* prev;
5 union { // Depending on whether the chunk is free or not.
6 char payload[];
7 FreeInfo freeInfo;
8 };
9 };

10 // Called on alloc2, before merging it into alloc1.
11 void removeFromFreeList(Chunk* chunk) {
12 FreeInfo* freeInfo = chunk->freeInfo;
13 freeInfo->prev->next = freeInfo->next; // mirrored
14 freeInfo->next->prev = freeInfo->prev; // write
15 }

(c) Excerpt from the emmalloc allocator (edited for clarity).

Figure 6: Example of a heap metadata corruption in emmalloc after an overflow on the heap.

Given an overflow of data in alloc1 (e.g., due to a memcpy

with the wrong length), an attacker can write to the directly
adjacent metadata of alloc2 to clear the used bit and set up
a “fake” FreeInfo struct (Figure 6b). Finally, when alloc1 is
freed, the allocator checks whether there is an opportunity to
merge the newly freed chunk with an adjacent free chunk. Be-
cause the manipulated metadata identifies the following chunk
as free, the allocator calls removeFromFreeList to unlink it in
preparation for merging the two. In line 13 of Figure 6c, the
unlinking code of emmalloc then writes the attacker-controlled
value of the next field into the next field of another FreeInfo
struct (i.e., to an offset of 4 bytes) at the attacker-controlled
address in prev. This allows the attacker to write an arbitrary
value to an arbitrary address. Due to line 14, there additionally
is a mirrored write into the location pointed to by next. Thus,
to avoid a runtime error terminating execution, both prev and
next must be valid pointers. Since Emscripten allocates a
default stack size of 5MiB, values below 5× 220 can in all
likelihood be safely written. This is more than sufficient for
overwriting function table indices (see Section 4.3.1), which
are at most in the range of thousands.

The above methods for obtaining write primitives are by no
means exhaustive, but the most direct methods from the tradi-
tional exploit arsenal that currently do not have mitigations
in WebAssembly. Other possible attacks may exploit format
string vulnerabilities, use-after free and double-free vulnera-
bilities, single-byte buffer overflows, or perform more sophis-
ticated attacks on memory management.

4.2 Overwriting Data

The second dimension of attack primitives corresponds to the
data that can be overwritten with a given write primitive to
gain additional control over the execution.

4.2.1 Overwriting Stack Data

The unmanaged stack in linear memory contains function-
scoped data, such as arrays, structs or any value that has its
address taken. With a given fully-flexible write primitive, an
attacker can overwrite any potentially critical local data in-
cluding function pointers represented as function table indices
or arguments to security-critical functions.

In contrast to native code, there are no return addresses
on the unmanaged stack. Hence, a purely linear stack-based
buffer overflow cannot easily take control of the execution.
However, the overflow can reach all currently active call
frames if the stack is growing downwards, as it does in most
configurations, see Section 3.2. Because there are no return
addresses or stack canaries, the overflow can overwrite local
data of all calling functions without risking early termination.

4.2.2 Overwriting Heap Data

The heap commonly contains data with longer lifetime and
will store complex data structures across different functions.
Targeted writes to heap data are straightforward in WebAs-
sembly due to the fully deterministic memory allocation (Sec-
tion 3.3). To make matters worse, even a linear stack-based
buffer overflow of sufficient length can corrupt heap data. The
reasons are that the heap comes after the stack in any compiler
configuration (Section 3.2) and that no mechanism, such as
guard pages, mitigates such attempts.

Note that with a single linear memory, there is no way to
avoid the fundamental risk of either stack overflows or stack-
based buffer overflows. If the stack grows upwards, a stack
overflow can silently corrupt heap data. If the stack grows
downwards, stack-based buffer overflows are the culprit.

4.2.3 Overwriting “Constant” Data

The following it the perhaps most surprising target of a data
overwrite, as it is impossible in modern native platforms.

7

Many programming languages allow to protect data from be-
ing overwritten by declaring it constant. This is enforced not
just by the type system, but also at runtime by placement in
read-only memory. As WebAssembly has no way of making
data immutable in linear memory, an arbitrary write primitive
can change the value of any non-scalar constant in the pro-
gram, including, e.g., all string literals. Even more restricted
write primitives allow modification of constant data: a stack
overflow with the memory layout of Figure 4b can write into
constant data; similarly, a stack-based buffer overflow can
reach constant data in the memory layout of Figure 4c. As a
result, an attacker with either of those capabilities can over-
write any supposedly constant data, compromising the guar-
antees intended by the programming language. We will show
two examples of exploits caused by this surprising aspect of
WebAssembly linear memory in the next section.

4.3 Triggering Unexpected Behavior
Given a write primitive (Section 4.1) and a choice of data to
overwrite (Section 4.2), there are several ways for an attacker
to trigger unexpected behavior.

4.3.1 Redirecting Indirect Calls

The closest equivalent of native control-flow attacks in Web-
Assembly is the redirection of indirect function calls. This
type of attack allows for executing code that normally would
not be executed in a given context.

In Section 2, we have illustrated indirect function calls in
WebAssembly. An attacker may redirect an indirect call by
overwriting an integer in linear memory that eventually serves
as an index into the table section. As described in Section 4.2,
this integer value may be a local variable on the unmanaged
stack, part of a heap object, in a vtable, or even a supposedly
constant value.

WebAssembly has two mechanisms that limit an attacker’s
ability to redirect indirect calls. First, not all functions defined
in or exported into a WebAssembly binary appear in the table
for indirect calls, but only those that may be subject to an
indirect call. Second, all calls, both direct and indirect, are type
checked. As a result, an attacker can redirect calls only within
the equivalence class of functions of the same type, similar
to type-based control-flow integrity [15]. In Section 6 we
measure to what extent these mechanisms reduce the available
call targets an attacker can choose from.

4.3.2 Code Injection into Host Environment

WebAssembly modules can interact with their host environ-
ment in various ways to cause externally visible effects.
One such way is to invoke the notorious eval function
of a JavaScript host environment, which interprets a given
string as code. To access eval, WebAssembly modules com-
piled via Emscripten can use, e.g., emscripten_run_script,

which executes JavaScript code in the host environment, both
in browsers and in Node.js-based server-side code [7]. In
browsers, any function that allows to add code to the docu-
ment (e.g., document.write) can serve as an eval-equivalent
for constructing exploits. In Node.js, the low-level nature of
the API gives even more options for code injection, e.g., the
exec function of the child_process module.

Using the primitives described in Section 4.1 and Sec-
tion 4.2, an attacker may inject malicious code by overwriting
the argument passed to an eval-like function. For example,
suppose a WebAssembly usually invokes eval with a “con-
stant” string of code stored in linear memory, then an attacker
could overwrite that constant with malicious code.

4.3.3 Application-specific Data Overwrite

Depending on the application, there can be other sensitive
targets for data overwrites. For example, a WebAssembly
module issuing web requests through an imported function
could be made to contact a different host by overwriting the
destination string, to initiate cookie stealing. As a further ex-
ample, several interpreters and runtimes have been compiled
to WebAssembly, e.g., to execute CIL/.NET code directly in
the browser [5]. These kinds of environments contain many
opportunities for significantly altering program behavior, e.g.,
by overwriting bytecode then interpreted by the runtime.

5 End-to-End Attacks

We now demonstrate several end-to-end attacks that represent
different points in the design space of attacks defined by
the primitives of Section 4. These attacks substantiate our
claim that the current lack of mitigations in the WebAssembly
ecosystem enables realistic attack scenarios. We make all
described attacks publicly available, providing a benchmark to
guide and evaluate future work on hardening WebAssembly.

Table 1 gives an overview of the end-to-end attacks. The
attacks cover several platforms that support WebAssembly:
the browser, where we demonstrate a cross-site scripting at-
tack; Node.js, where we show a remote code execution attack;
and stand-alone WebAssembly VMs, such as wasmtime [10],
where we show an arbitrary file write attack.

5.1 Cross-Site Scripting in Browsers
This attack shows that including vulnerable code compiled to
WebAssembly into a client-side web application can enable
attacks known from JavaScript-based applications, such as
cross-site scripting (XSS). As an example, consider an image
sharing service where users upload and view images. The ser-
vice provides a web application that converts images between
different formats on the client side, using a version of the
libpng image codec library compiled to WebAssembly (Fig-
ure 7). Given a file to be converted to PNG, the application

8

§ Host environment Write primitive Overwritten data Location of data Malicious behavior

5.1 Browsers (client-side)
Stack-based buffer overflow
(CVE-2018-14550)

Image tag in
DOM string

Heap
Cross-site scripting in JavaScript via
document.write()

5.2 Node.js (server-side) Heap metadata corruption Function index Stack Inject arbitrary shell command into exec()

5.3
Wasmtime
(stand-alone runtime)

Stack-based buffer overflow String literals “Constant” data
Write arbitrary content to chosen
file using fprintf()

Table 1: Overview of our end-to-end attacks, using different combinations of attack primitives on three host environments.

(a) In the benign case: Select a
PNM image and. . .

(b) . . . convert it to PNG with a
C library, fully on the client side.

(c) A malicious input can overflow a buffer on the stack, then corrupt
a string on the heap, which is later used in DOM manipulation.

1 void main() {
2 std::string img_tag = "<img src=’data:image/png;base64,";
3 pnm2png("input.pnm", "output.png"); // CVE-2018-14550
4 img_tag += file_to_base64("output.png") + "’>";
5 emcc::global("document").call("write", img_tag);
6 }

(d) Excerpt of C++ code (to be compiled with Emscripten) that uses
the vulnerable C library.

Figure 7: Example of cross-site scripting caused by using the
vulnerable libpng library (CVE-2018-14550).

calls libpng and then displays the image by calling a DOM
manipulation function, such as document.write, provided by
the JavaScript host environment.

Version 1.6.35 of libpng suffers from a known buffer over-
flow vulnerability (CVE-2018-14550 [3]), which can be ex-
ploited when converting a PNM file to a PNG file. When
the library is compiled to native code with modern compilers
on standard settings, stack canaries prevent this vulnerability
from being exploited. In WebAssembly, the vulnerability can
be exploited unhindered by any mitigations.

To exploit the vulnerability for cross-site scripting, an at-
tacker provides a malicious image to another user who then
displays it using the web application. Figure 7d shows a mini-
mal version of such an application. During normal execution,
the application converts the image (line 3), encodes it with
base64 in a data URL, copies it into an img tag (line 4), and
then adds the tag into the document (line 5). Since the im-

age is embedded into the DOM as a base64-encoded string,
it normally cannot lead to XSS. However, exploiting the
stack-based buffer overflow in libpng allows the attacker to
overwrite higher addresses, including the heap, which holds
the C++ string with the img tag (line 2). The attacker can
then replace the img tag with arbitrary other content, e.g., a
script tag that displays an alert, which will then get passed
to document.write.

Depending on how the input data is uploaded, the above
scenario can lead to both non-persistent and persistent XSS
attacks. In the non-persistent variant, the attacker tricks the
user into uploading a malicious image, which then triggers
the attack immediately in the user’s browser. In the persistent
variant, the attacker uploads the malicious input image himself
and then shares it with others, who will be attacked once they
download the input, and convert it in their browser with the
vulnerable WebAssembly application.

5.2 Remote Code Execution in Node.js
In the next attack, we demonstrate that including vulnerable
WebAssembly in a Node.js-based application can enable re-
mote code execution. As an example, consider a server that
accepts requests to log the ids of customers that have been
happy or unhappy about some product. Figure 8b shows an
excerpt of the code running in the server application. The
handle_request function receives three attacker-controlled
parameters: input1, which describes whether the customer
was happy; input2, which is supposed to be the length of the
string in input1; and input3, which contains the id of the cus-
tomer. Depending on the customer’s happiness, the code calls
log_happy or log_unhappy, which is selected by assigning the
respective function to the function pointer func.

The code contains a heap overflow vulnerability at line 9.
In the absence of safe unlinking and other mitigations (we use
the emmalloc allocator for our proof of concept) an attacker
can use the overflow to obtain an arbitrary write primitive
through the classic heap metadata corruption attack (see Sec-
tion 4.1.3). If the function pointer func is compiled into a
variable in linear memory (which is the case, e.g., for all
function pointers in vtables), the attacker can use the write
primitive to manipulate it and redirect the call (Section 4.3.1).
The absence of ASLR simplifies such an attack further, as the
address to overwrite is deterministic.

9

1 // Functions supposed to be triggered by requests
2 void log_happy(int customer_id) { /* ... */ }
3 void log_unhappy(int customer_id) { /* ... */ }
4

5 void handle_request(char *input1, int input2, char *input3) {
6 void (*func)(int) = NULL;
7 char *happiness = malloc(16);
8 char *other_allocation = malloc(16);
9 memcpy(happiness, input1, input2); // Heap overflow

10 if (happiness[0] == ’h’) func = &log_happy;
11 else if (happiness[0] == ’u’) func = &log_unhappy;
12 free(happiness); // Unlink exploit overwrites func
13 func(atoi(input3)); // 3rd input is passed as argument
14 }
15

16 // Somewhere else in the binary:
17 void exec(const char *cmd) { /* ... */ }

(a) Sample application that calls one of two logging functions de-
pending on its input. It suffers from a heap overflow, which causes
an arbitrary write on free, allowing to redirect func to &exec. Then
input3 can be chosen as the address of an injected string.

1 (func $log_happy (param i32) (result) ...)
2 (func $log_unhappy (param i32) (result) ...)
3 (func $exec (param i32) (result) ...)

(b) Excerpt of the function section for the binary compiled from Fig-
ure 8a, showing that exec, log_happy, and log_unhappy all have
the same WebAssembly type [i32]→ [].

Figure 8: Example of remote code execution.

One possible target for redirecting the call is the exec func-
tion that can also be found in the binary (line 17). While exec

and the log_* functions have different C++ types, all three
functions have identical types on the WebAssembly level
(Figure 8b). The reason is that both integers and pointers are
represented as i32 types in WebAssembly, i.e., the redirected
call passes WebAssembly’s type check. The final challenge is
to pass an arbitrary command into exec, which is similar to
the injection of shellcode in native exploitation. One option
is to inject a suitable command string into the heap when
overwriting the function index, and to then pass a decimal
string with the address of the command string as input3.

5.3 Arbitrary File Write in Stand-alone VM
WebAssembly is starting to establish itself as a universal
bytecode beyond web applications. To this end, applications
require access to the underlying operating system, e.g., for
manipulating files. This interface is currently undergoing stan-
dardization as the WebAssembly System Interface (WASI) [9].
There are multiple virtual machines for running stand-alone
WebAssembly applications, including wasmtime [10] and
WAVM [11], and Clang can compile for them.

This attack demonstrates that, despite stand-alone WebAs-
sembly VMs being advertised as a secure platform for exe-
cuting C/C++ code, WebAssembly currently enables attacks
impossible in modern native execution platforms. Figure 9a

1 // Write "constant" string into "constant" file
2 FILE *f = fopen("file.txt", "a");
3 fprintf(f, "Append constant text.");
4 fclose(f);
5

6 // Somewhere else in the binary:
7 char buf[32];
8 scanf("%[^\n]", buf); // Stack-based buffer overflow

(a) C program with stack-based buffer overflow that overflows into
‘constant’ section, causing an arbitrary file write.

1 (data (i32.const 65536) "%[^\0a]\00
2 file.txt\00a\00
3 Append constant text.\00...")

(b) Excerpt of the data section for the binary compiled from Fig-
ure 9a, showing that the filename literal and contents to be written
are located in regular (writable) linear memory.

Figure 9: Example of arbitrary file write.

shows an excerpt of an apparently harmless application that
appends a constant string to a statically known file. Some-
where else in the program, the code suffers from a textbook
buffer overflow, which enables an attacker to overwrite data
on the stack. Compiled to a native target, exploiting the buffer
overflow cannot influence the file I/O, which is entirely based
on string literals stored in the read-only pages loaded from
the .rodata section.

When running on a stand-alone WebAssembly VM, this
vulnerability can be exploited for an arbitrary file write. The
strings for filename and contents are stored in the unmanaged
linear memory, as shown in Figure 9b. They can be overwrit-
ten by a stack-based buffer overflow of sufficient length if
data lies above the stack (see Section 3.2). As a result, the
attacker can write arbitrary data into an arbitrary file by over-
writing the filename and contents strings. In our exploit, even
the file open mode "a" (append) is changed to "w" by simply
overwriting the corresponding string in the data section.

6 Quantitative Evaluation

To better understand how realistic the attacks described so far
are in practice, we now present a quantitative evaluation on
real-world WebAssembly binaries. We address the following
research questions:

RQ1 How much data is stored on the unmanaged stack?
This question is relevant because the unmanaged stack
serves both as an entry point to obtain a write primitive,
e.g., via a stack-based buffer overflow, and as a target for
overwrites, e.g., to manipulate sensitive data. (Section 6.2)

RQ2 How common are indirect calls and how many func-
tions can be reached from indirect calls? These questions
are relevant to understand the risk for control-flow diver-
gence by redirecting indirect calls. (Section 6.3)

10

RQ3 How does WebAssembly’s type checking of indirect
call targets compare to current control-flow integrity (CFI)
defenses for native binaries? Since the runtime validation
of indirect call targets performed by the WebAssembly VM
resembles CFI defenses, we compare both in terms of CFI
equivalence classes and class sizes. (Section 6.4)

We make our full dataset and the tools we developed to
obtain them available for download (see Section 1).

6.1 Experimental Setup and Analysis Process
Program Corpus The binaries we analyze in our quanti-
tative evaluation are split into two groups. First, we collect
a set of 9 binaries from real-world, deployed WebAssembly
applications: Adobe’s Document Cloud View SDK7 renders
and annotates PDFs in the browser; Figma8 is a collaborate
user-interface design web application; the 1Password X 1.17
browser extension9 contains a WebAssembly component for
password generation; Doom 3 as an example of a large game
engine ported to WebAssembly10; and finally a set of codecs
(webp, mozjpeg, optipng, hqx) for in-browser image conver-
sion11. The binaries span different application domains (docu-
ment editing, games, codecs), deployment scenarios (web ap-
plication, browser extension), and source languages (C, C++,
Rust), so we believe they are a good first approximation of
realistic WebAssembly binaries. We collect their most recent
versions as of March 2020. Since our tool is open source, we
welcome others to replicate our results and extend them by
analyzing other WebAssembly binaries.

The second group of binaries in our corpus are 17 C and
C++ programs from the SPEC CPU 2017 benchmark suite,
compiled to WebAssembly. SPEC CPU has been used before
to study the performance of WebAssembly [37]. It has also
been used to evaluate the security of CFI techniques for native
code [21, 69], enabling us to address RQ3. Those programs
are from compute-heavy domains (programming language
implementations, simulations, video codecs, compression),
matching the original use cases for WebAssembly [13].

Our combined program corpus consists of 26 WebAssem-
bly binaries, which contain 19.2M instructions across 98,924
functions in total. Table 2 gives a more detailed overview.

Toolchain and Configuration We compiled the SPEC
CPU programs with Emscripten 1.39.7, i.e., the most recent
version at the time of writing, with its upstream backend.
Since this backend is shared by all LLVM-based WebAs-
sembly compilers (Clang, Rust), our results should translate
also to them. For completeness, we also compiled all SPEC
CPU programs with the now deprecated fastcomp backend

7https://www.adobe.io/apis/documentcloud/dcsdk/viewsdk.html
8https://www.figma.com/
9https://1password.com/
10http://www.continuation-labs.com/projects/d3wasm/
11https://squoosh.app/

of Emscripten. Since fastcomp was the default backend of
Emscripten until October 2019, its results are relevant for
large amounts of code previously compiled to WebAssembly.
The results for fastcomp and upstream are very similar, so for
brevity we only present the upstream results in the following.

To obtain optimized binaries without symbols or debug
information, we compile with -O3. GCC, x264, Blender, and
Xalan-C++ required several preprocessor flags for compata-
bility, e.g., to set correct integer bit-widths and platforms.
Some programs also had to be manually linked because Em-
scripten’s libc (based on musl) causes errors due to duplicate
symbol definitions.

Static Analysis To address our research questions, we de-
velop a lightweight static analysis tool. To the best of our
knowledge, it is the first security analysis tool for WebAssem-
bly binaries. The analysis is written in Rust and does:

• Extract general information about the program, e.g., in-
struction counts, number of functions, and their types.

• Analyze the unmanaged stack by inferring which global

is the stack pointer, which functions access it, and how
the stack pointer is incremented and decremented.

• Analyze the table section and its static initialization, to
find out which functions are present in it, as well as the
function type for each initialized table index.

• Analyze indirect call edges to extract the statically en-
coded type of allowed call_indirect targets, how many
functions match that type, additional restrictions on the
call targets, and CFI equivalence classes and their sizes.

We explain the analyses in more detail in the following.

6.2 Measuring Unmanaged Stack Usage
Measuring how much data a program stores on the unmanaged
stack (RQ1) is important for two reasons. First, such data
could potentially suffer from a stack-based overflow. Second,
such data may become subject to overwrites once an attacker
has a write primitive. So how much data ends up on the
unmanaged and, as we saw earlier, unprotected stack?

Static Analysis Our static analysis measures the size of the
stack frame on the unmanaged stack for each non-imported
function. The analysis operates on optimized, stripped bina-
ries without debug information, as a realistic attacker would,
and thus has to infer the unmanaged stack usage directly from
the bytecode.

First, the analysis needs to identify the stack pointer. Unlike
in native binaries, there is no convention to use a fixed register
(such as rsp on x86, which does not exist in WebAssembly)
or global variable for the stack pointer. Instead, the analysis
extracts all instructions that modify globals and selects the one
that is most frequently read and written. A manual analysis
confirms that this heuristic reliably finds the stack pointer.
From the identified global’s static initialization, we also know
the base address of the unmanaged stack in linear memory.

11

https://www.adobe.io/apis/documentcloud/dcsdk/viewsdk.html
https://www.figma.com/
https://1password.com/
http://www.continuation-labs.com/projects/d3wasm/
https://squoosh.app/

24 26 28 210 212 214 216 218 220

Stack frame size (bytes)

100

101

102

103

104

Nu
m

be
r o

f f
un

ct
io

ns

(a) Histogram (double logarith.).

70

80

90

Nu
m

be
r o

f f
un

ct
io

ns
 ×

 1
00

0

24 26 28 210212214216218220

Stack frame size (bytes)

70%

80%

90%

100%

(b) Cumulative distribution.

Figure 10: Two representations of the distribution of frame
sizes on the unmanaged stack for all functions in our program
corpus.

Second, for each function, the analysis infers the size of
the stack frame on the unmanaged stack. In all analyzed bi-
naries, the previously identified stack pointer is modified in a
protocol similar to function prologues and epilogues in native
binaries. Specifically, our analysis pattern matches against
the following sequence of instructions and extracts the delta
value, which gives us the stack frame size:

1 global.get $i
2 i32.const <delta>
3 i32.add or i32.sub
4 local.tee $j (optional)
5 global.set $i

This sequence first reads the current stack pointer from global
$i (identified earlier), then increments or decrements it (de-
pending on whether the stack grows upwards or downwards,
see Section 3.2), optionally saves it to a local (akin to a base
pointer), and finally writes the modified value back.

Results Figure 10 shows the distribution of stack frame
sizes across all analyzed binaries, both as a histogram (Fig-
ure 10a) and the cumulative distribution (Figure 10b). One
third (32,651) of all functions in the program corpus store
some data on the unmanaged stack. The smallest frame size
of 16 (24) bytes is allocated by 13,620 functions (14% of
all functions). Stack frame sizes span the whole range from
16 bytes to 1MiB, which is the largest static stack allocation.
The distribution has a long tail towards large stack frames.
From the cumulative distribution in Figure 10b, we see that
6% (6,127) of all functions allocate 128 (27) bytes or more
on the unmanaged stack, and 1.3% (1,232) of all functions
allocate at least 1KiB.

Overall, we see that many functions use the unmanaged
stack, which is susceptible not only to arbitrary memory writes
but also to inter-frame buffer overflows (see Section 4). This
implies that with increasing call depth, the chance for an at-
tacker to find at least some data to overwrite increases quickly.
For example, with ten nested calls (assuming a uniform dis-
tribution of functions), there would be some data on the un-
managed stack with 1− ((1−0.33)10)≈ 98.2% probability.
We conclude that (1) a lot of stack data is prone to being over-
written by buffer overflows and arbitrary write primitives, and

(2) it is important to isolate stack frames on the unmanaged
stack, e.g., using stack canaries.

6.3 Measuring Indirect Calls and Targets
To better understand the risk for control-flow attacks (RQ2),
we analyze indirect calls and their call targets in the binaries.

Indirect Calls First, we want to know how many indirect
calls are present in a binary, since each such call could be
a source of an unintended control-flow edge. Our analysis
disassembles all binaries in Table 2 and counts the number of
call_indirect instructions (column “Indirect calls: Count”).
The percentage of indirect calls relative to all calls varies con-
siderably between programs (column “of All”), from 0.6% up
to 31.3%. We also observe that the proportion of indirect calls
is independent of whether the source language is C or C++.
Averaged over all 26 programs, 9.8% of all call instructions
are indirect, i.e., almost every tenth call can be potentially
diverted to other functions.

Indirectly Callable Functions To successfully redirect a
control-flow edge, an attacker not only needs to find an in-
direct call instruction as the source, but also a compatible
function as the target. Two pre-conditions must hold for a
function to be a valid indirect call target (Section 2). First, the
function’s type must be compatible with the type statically en-
coded in the indirect call instruction. WebAssembly function
types are very low-level, however. For example, the type [i32]
→ [] is compatible with all C functions that return void and
take as argument a pointer (regardless of type or const-ness),
an array, a plain int, or anything else that is represented as a
32-bit integer, e.g., enums.

Second, the function must be present in the table section
of the binary, because the index passed to call_indirect is
resolved to a function via this table. Our static analysis tool
finds which functions are initialized in the table at program
startup. Entries in the table cannot be manipulated by the
WebAssembly program itself. In principle, the host environ-
ment, e.g., JavaScript in the browser, could add or remove
entries at runtime. We manually verified that the JavaScript
code generated by Emscripten does not modify the table, and
thus assume our analysis precisely measures the potential
targets of indirect calls.

The columns “Indirectly Callable” in Table 2 show
how many functions are type-compatible with at least one
call_indirect instruction and present in the table section.
The percentage of indirectly callable functions ranges from
5% to 77.3%, with on average 49.2% of all functions in the
program corpus.

Function Pointers in Memory The above results give an
upper bound of potential targets for control-flow divergence.
In practice, if the table index passed to call_indirect comes
from a local variable, a global variable, or is the result of

12

Binary Source Instruct.
Indirect calls Functions CFI equivalence classes

Count of All Count Indirectly Callable Idx. from mem. Count Min Max Avg

Collected from deployed applications
Adobe View SDK C++ 1.1M 2803 6.2% 12566 3076 24.5% 3054 24.3% 87 1 848 32.2
1Password X exten. Rust 730.2k 283 1.4% 1941 596 30.7% 586 30.2% 19 1 91 14.9
Doom 3 C++ 1.7M 17903 31.3% 8239 4449 54.0% 4408 53.5% 642 1 3889 27.9
Figma C++ 3.2M 10469 8.1% 13619 3657 26.9% 3635 26.7% 68 1 4519 154.0
WebP encoder C 73.1k 87 3.6% 889 165 18.6% 69 7.8% 22 1 15 4.0
WebP decoder C 43.4k 69 5.4% 563 160 28.4% 107 19.0% 20 1 9 3.5
mozjpeg C 77.7k 298 22.0% 388 135 34.8% 116 29.9% 28 1 169 10.6
optipng C 119.2k 169 5.4% 735 152 20.7% 124 16.9% 28 1 34 6.0
hqx Rust 111.4k 34 0.6% 73 17 23.3% 15 20.5% 4 1 16 8.5

Compiled from SPEC CPU 2017
500.perlbench C 837.8k 425 1.6% 2128 980 46.1% 956 44.9% 31 1 93 13.7
502.gcc C 2.9M 3642 2.5% 9541 3394 35.6% 3375 35.4% 78 1 982 46.7
505.mcf C 27.4k 44 8.8% 136 12 8.8% 8 5.9% 7 1 28 6.3
508.namd C++ 323.0k 41 1.1% 296 124 41.9% 107 36.1% 15 1 12 2.7
510.parest C++ 1.0M 1229 2.6% 3762 2864 76.1% 2714 72.1% 97 1 199 12.7
511.povray C++ 385.4k 228 1.9% 1421 521 36.7% 510 35.9% 29 1 57 7.9
519.lbm C 13.4k 12 6.2% 80 7 8.8% 6 7.5% 5 1 8 2.4
520.omnetpp C++ 619.3k 4536 10.6% 4615 3569 77.3% 3505 75.9% 79 1 1631 57.4
523.xalancbmk C++ 1.5M 13567 16.2% 8050 6225 77.3% 6072 75.4% 77 1 3893 176.2
525.ldecod C 233.0k 354 8.6% 551 129 23.4% 68 12.3% 24 1 135 14.8
525.x264 C 283.6k 773 14.2% 636 253 39.8% 177 27.8% 31 1 105 24.9
526.blender C++ 3.2M 17198 14.9% 25901 17387 67.1% 17263 66.6% 128 1 5360 134.4
531.deepsjeng C 53.0k 10 1.1% 174 10 5.7% 8 4.6% 5 1 6 2.0
538.imagick C 517.5k 1901 9.9% 1068 91 8.5% 74 6.9% 22 1 1592 86.4
541.leela C++ 118.8k 263 5.0% 1101 600 54.5% 520 47.2% 41 1 74 6.4
544.nab C 55.6k 17 1.7% 201 10 5.0% 8 4.0% 6 1 7 2.8
557.xz C 53.3k 71 11.0% 250 98 39.2% 86 34.4% 19 1 11 3.7

Average per binary 738.1k 2939.5 3804.8 1872.3 1829.7 62.0 1 914.7 33.2
Total 19.2M 76426 9.8% 98924 48681 49.2% 47571 48.1%

Table 2: Program corpus overview and static analysis results regarding indirect calls, function table, and CFI equivalence classes.

a sequence of instructions, then the indices an attacker can
choose from are likely more restricted. As a lower bound
of targets to choose from, we also measure how many table
indices are read directly from memory. We obtain this num-
ber through a static analysis of the instructions preceding
indirect calls. Columns “Idx. from mem.” show the num-
ber of type-compatible and in-table functions, for which at
least one indirect call exists that takes its table index directly
from linear memory. For each such function, given an arbi-
trary write primitive into linear memory, an indirect call could
be diverted to reach the function. Perhaps surprisingly, this
lower bound of reachable functions is very close to the upper
bound: On average, 48.1% of all functions can be reached by
a call_indirect that takes its argument from linear memory.

Overall, our analysis of indirect calls and targets shows a
large potential for effective control-flow divergence. Many
functions are indirectly callable (49.2%, on average) and most
of them could be reached by simply overwriting an index
stored in linear memory (48.1%). We conclude that diverging
indirect function calls poses a serious threat to the integrity
of control flow in WebAssembly.

6.4 Comparing with Existing CFI Policies
WebAssembly’s type checking of indirect calls can be seen
as a form of control-flow integrity (CFI) for forward edges.12

CFI has been extensively researched [15, 21, 39, 48, 49, 63,
69, 71, 72] and is deployed in open-source (GCC [62] and
LLVM [6]) and commercial compilers (MSVC [2]). We now
compare WebAssembly’s type checking with state-of-the-art
CFI defenses for native binaries (RQ3).

Equivalence Classes Following prior work on CFI [21], we
measure its effectiveness by analyzing the sets of control-flow
targets an indirect transfer may be diverted to according to the
CFI mechanism. Each such a set is called a CFI equivalence
class. To assess the effectiveness of a CFI defense, we use two
measures: The class count, i.e., how many different classes
exist, and the sizes of the classes, i.e., how many targets are
in each class. A small class count means the CFI defense
distinguishes little between targets, giving attackers more
options for control-flow divergence. A large class size is also

12Backward edges, i.e., returns, are protected due to being managed by the
VM and offer security conceptually similar to shadow stack solutions.

13

Program
Number of CFI equivalence classes

MCFI [48] πCFI [49] LLVM-CFI 3.9 Wasm

perlbench 38 30 36 31
mcf 12 8 N/A 7
omnetpp 357 321 35 79
xalancbmk 1534 1200 260 77
namd 166 150 4 15
povray 218 204 33 29

(a) Number of equivalence classes (higher means more secure).

Program
Size of largest CFI equivalence class

MCFI [48] πCFI [49] LLVM-CFI 3.9 Wasm

perlbench 348 347 350 93
mcf 29 15 N/A 28
omnetpp 275 253 170 1631
xalancbmk 1141 608 95 3893
namd 187 113 30 12
povray 187 113 81 57

(b) Sizes of equivalence classes (lower means more secure).

Figure 11: Comparing WebAssembly with native CFI solu-
tions. Native data taken from [21] for programs in the inter-
section of SPEC CPU 2006 (theirs) and 2017 (ours).

insecure, as it means a large number of control-flow targets
can all be reached from a single source instruction.

For WebAssembly, we measure CFI equivalence classes by
analyzing the type signatures of indirectly callable functions,
assigning all functions with the same type signature into an
equivalence class. Additionally, we analyze the preceding
instructions before an indirect call to determine whether they
restrict the table index, e.g., via bitmasking, to a smaller range.
The last block in Table 2 shows the results. On average, there
are 62 equivalence classes per program, which each contain
33.2 functions. The largest equivalence class, in the Blender
program, contains over 5,300 functions. Overall, this shows
that an attacker has plenty of call targets to choose from.

Comparing with Native CFI Defenses To put the results
on equivalence classes in perspective, we compare them with
results reported for native CFI defenses [21]. The tables in
Figure 11a and Figure 11b compare the counts and sizes of
equivalence classes, respectively. For example, MCFI [48]
and πCFI [49] partition the control-flow targets of xalancbmk
into 1534 and 1200 classes, respectively, whereas WebAssem-
bly’s indirect call target restrictions yield only 77 such classes.
Regarding the size of equivalence classes, WebAssembly has
especially large classes for omnetpp and xalancbmk, and sim-
ilar classes sizes as the native defenses for other programs.

Interestingly, omnetpp and xalancbmk are C++ programs
that make heavy use of object-oriented programming with
virtual functions. Source-level type information, e.g., about

class hierarchies, can help compiler-based CFI methods to
identify more precise, and thus restrictive, equivalence classes.
In contrast, WebAssembly’s type checking has only (combi-
nations of) four low-level primitive types to work with, which
might explain the stark difference to the native schemes.

Overall, WebAssembly’s type checking is often less effec-
tive than modern CFI defenses available for native binaries.
While type-checked indirect calls certainly are a step for-
ward compared to not having any CFI defense, adapting more
sophisticated CFI defenses could significantly harden the cur-
rently produced binaries. For example, Clang’s CFI scheme,
which uses source-level information, can also be employed by
passing -fsanitize=cfi when compiling to WebAssembly.

7 Discussion of Mitigations

The following discusses several mitigations that could defeat
the attacks presented in this paper, e.g., through amending the
language specification, updates to compilers, or by application
and library developers.

7.1 WebAssembly Language
Several proposals for extending the core WebAssembly lan-
guage could address some of our attack primitives.

The multiple memories proposal [54] gives one module
the option of having multiple linear memories. Under the pro-
posal, memory operations statically encode which memory
they operate on, e.g., an i32.load $mem2 instruction can only
load data from memory 2. Multiple memories would enable
separating stack, heap, and constant data. Thus, an overflow
in one memory section would no longer affect data in another
memory. Also, pointers to the heap could no longer be forged
to point into the stack and vice versa. Finally, if compilers
emit only load instructions for a particular memory section,
it becomes effectively read-only, since stores to other memo-
ries can never modify it. This would prevent overwriting of
constants. A challenge with this proposal is that compiling
to multiple memories is not straightforward. Since memory
accesses are statically restricted to a certain memory, code
that must handle pointers of different regions must either be
duplicated or objects explicitly copied between memories.

The reference types proposal [55] allows modules to have
multiple tables for indirect calls. Our call redirection primi-
tive is powerful only because all indirectly callable functions
currently are in the same table. Multiple tables allow for more
fine-grained defenses. One option is to define different pro-
tection domains, e.g., one per statically-linked library, and to
keep a separate table per protection domain. Another option
is to split call targets into equivalence classes, similar to exist-
ing CFI techniques for native binaries, and to keep a separate
table per equivalence class.

Finally, the MS-Wasm proposal [26] explicitly targets mem-
ory safety. It proposes to add so called segments to WebAs-

14

sembly, memory regions with defined size and lifetime. Han-
dles into those segments are promoted to first class types, with
own operations for allocation and slicing. This requires quite
some implementation effort by hosts, and unless hardware
support for memory safety is provided, will likely incur a
performance overhead.

A challenge with all changes to the core language is that
they require updating existing virtual machines. Since WebAs-
sembly is implemented not just by one vendor, but in at least
four browsers (Chrome, Firefox, Safari, and Edge), Node.js,
and several standalone VMs (Wasmtime, WAVM, Lucet), this
risks a split of the still young ecosystem. However, both the
multiple memories and reference types proposal are (as of
June 2020) in phase 3 of the four phase standardization pro-
cess.13

7.2 Compilers and Tooling
The perhaps most simple way of preventing many of our
attack primitives is to implement and activate security fea-
tures that compilers, linkers, and allocators already provide
for native compilation targets. Decades of research on binary
security [61] have resulted in several mitigations that could be
applied to WebAssembly. Examples that would benefit Web-
Assembly compilers are FORTIFY_SOURCE-like code rewriting,
stack canaries, CFI defenses, and safe unlinking in memory
allocators. In particular for stack canaries and rewriting com-
monly exploited C string functions, we believe there are no
principled hindrances to deployment. We hope they will be
implemented by compilers in the future, since they offer good
security benefit for relatively little change to the ecosystem,
unlike, e.g., language changes.

A longer-term mitigation in compilers is to use the Web-
Assembly language extensions discussed above, once they
become available. For example, when compiling C/C++ to
WebAssembly, multiple memories could mimic some of the
security features provided by page protections in native code.

7.3 Application and Library Developers
Developers of WebAssembly applications can reduce the risk
by using as little code in “unsafe” languages, such as C, as
possible. To reduce the attack surface, developers should also
ensure to import only those APIs from the host environment
that are strictly necessary. For example, calling critical host
functions, such as eval or exec is impossible unless these
functions are imported in the WebAssembly module.

8 Related Work

WebAssembly The language has a formally defined type
system shown to be sound [32, 67]. WebAssembly perfor-
mance and how it compares to native performance has been
13https://github.com/WebAssembly/proposals

studied [37]. Wasabi [42] is a general dynamic analysis frame-
work for WebAssembly. We discussed different proposals to
extend the language [26, 54, 55] in the previous section.

Malicious WebAssembly Among the early adopters of
WebAssembly have been websites that use the computing
resources of visitors to mine cryptocurrencies [41, 46, 56].
Since this is often unwelcome, several approaches detect and
defend against mining [40, 66], e.g., by profiling executed
instructions. Taint tracking techniques can also be used to
enforce security policies on untrusted WebAssembly pro-
grams [29, 60].

Malicious WebAssembly binaries are also crafted to escape
browser sandboxes and gain remote code execution [16, 59].
Unlike our work, those exploits attack bugs in specific VM
implementations and fall into the realm of host security, as
discussed in Section 1. Others use malicious WebAssembly
code to perform side-channel [30] and speculative execution
attacks [43] against the host. In contrast, we do not aim to
escape the sandbox, and our attacks assume nothing but a
standards-compliant WebAssembly VM. For example, the
exploit in Section 5.1 works in both Firefox and Chrome.
Since we do not escape the VM, we depend on the available
imported host functions for malicious actions. However, as we
show in our end-to-end exploits, cross-site scripting, remote
code execution, and file writes can still be consequences.

Vulnerable WebAssembly Two industry whitepapers
show example attacks against vulnerable WebAssembly bi-
naries [20, 45]. Their pioneering work prompted us to inves-
tigate WebAssembly binary security more thoroughly and
expand this research significantly in several directions.

In Section 3, we systematically analyze how program data
is mapped to linear memory by three different compilers, two
backends, and two linker configurations, whereas previous
work has only looked at select examples from a single com-
piler. From our analysis we conclude that, fundamentally due
to linear memory, WebAssembly cannot separate static data,
heap, and unmanaged stack, as guard pages like in native bi-
naries are unavailable. Unlike previous work, we thus show
a much larger set of attack primitives, including primitives
have not been reported for WebAssembly at all. For exam-
ple, we are the first to propose stack overflows (not buffer
overflows) as an attack primitive (Section 4.1.2). Prior work
has hypothesized that exploitation is possible, but we are the
first to demonstrate it in practice. One whitepaper and a blog
post [25, 45] warn that WebAssembly binaries come with
their own allocator, which is potentially not hardened. Our ex-
ploits against two different versions of Emscripten’s emmalloc
substantiate their hypotheses.

We also perform the first quantitative security evaluation on
a set of 26 WebAssembly binaries with more than 19 million
instructions in total (Section 6). A previous blog post [28]
explores that indirect calls can be redirected to unintended

15

https://github.com/WebAssembly/proposals

functions on a single example. We make this observation
quantifiable and measure that almost every second function
can be reached via an indirect call that takes its argument
directly from linear memory. We are also the first to estimate
how much data resides on the unmanaged stack in linear mem-
ory, a relevant number for estimating the risk from previously
described data overwrite primitives, and the first to compare
WebAssembly’s type-checking of indirect calls with native
CFI schemes.

Defensive WebAssembly WebAssembly’s well-designed
host security properties can also serve as a basis for software-
fault isolation (SFI). By compiling individual libraries to
WebAssembly and embedding a runtime into the main appli-
cation, memory errors in the library are isolated from the main
program. This has recently been successfully employed to
sandbox libraries in Firefox [47]. WebAssembly has also been
used as a compilation target for formally verified cryptogra-
phy [52] and extended to guarantee constant-time operations
for cryptographic primitives [68].

Exploiting Native Binaries There exists ample work on
binary exploitation; Sezkeres et al. [61] provide an excellent
overview of techniques for exploiting memory errors. The
stages used in their survey roughly corresponds to the dimen-
sions of attack primitives we use in Section 4. We find that,
although the exploit chains have to be adapted and effects
depend on the runtime environment, many techniques that are
effective in native binaries also transfer to WebAssembly.

Exploit Mitigations In response to attacks on native bina-
ries, many mitigations have been developed, including data-
execution prevention [17], stack canaries [24], ASLR [51],
and safe unlinking. The idea of control-flow integrity [15]
is the basis of several protection mechanisms. Control-flow
bending [22], data-only attacks [36], and other advanced at-
tacks [27, 57] demonstrate that even restrictive CFI policies
leave sufficient freedom for an attacker. Burow et al. [21]
provide a survey assessing the security of different CFI im-
plementations. Section 6.3 empirically compares with some
of their results. The restrictions imposed by WebAssembly
raise the difficulty for exploitation, but do not offer complete
security. We expect to see an arms race of mitigations and
ever more complex attacks in the WebAssembly ecosystem,
too, which will gradually increase security.

9 Conclusion

WebAssembly promises a portable platform for code com-
piled from C, C++, and other languages that combines near-
native performance with strong safety and security guaran-
tees. This paper presents the first in-depth security analysis
of WebAssembly binaries and compares the level of security
provided by WebAssembly with native platforms. We find

that vulnerable source programs result in binaries that enable
various kinds of attacks, including attacks that have not been
possible on native platforms since decades. Our findings are
based on a set of attack primitives that enable an attacker
to gain a write primitive, overwrite sensitive data, and trig-
ger compromising behavior. Several end-to-end examples of
attacks, which cover WebAssembly running in the browser,
on Node.js, and in stand-alone VMs, demonstrate that these
primitives can be combined into effective exploits. Moreover,
an empirical evaluation of real-world binaries quantifies the
exploitation risk, showing a large attack surface. Overall, our
findings are a call to arms for further hardening the WebAs-
sembly language, its compilers, and ecosystem, making the
promise of a secure platform a reality.

Acknowledgments

This work was supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 851895),
and by the German Research Foundation within the ConcSys
and Perf4JS projects.

References

[1] WebAsssembly Design – Security – Memory Safety. https:

//github.com/WebAssembly/design/blob/master/Security.md#

memory-safety, 2016.
[2] Control Flow Guard. https://docs.microsoft.com/en-us/

windows/win32/secbp/control-flow-guard, 2018.
[3] National Vulnerability Database – CVE-2018-14550 Detail.

https://nvd.nist.gov/vuln/detail/CVE-2018-14550, 2018.
[4] Wasmer – The Universal WebAssembly Runtime. https://

wasmer.io/, 2019.
[5] Blazor – Build client web apps with C#. https://dotnet.

microsoft.com/apps/aspnet/web-apps/blazor, 2020.
[6] Clang 11 documentation – Control Flow Integrity. https:

//clang.llvm.org/docs/ControlFlowIntegrity.html, 2020.
[7] Emscripten – Calling JavaScript from C/C++.

https://emscripten.org/docs/porting/connecting_cpp_

and_javascript/Interacting-with-code.html#interacting-

with-code-call-javascript-from-native, 2020.
[8] Emscripten – Release Notes. https://emscripten.org/docs/

introducing_emscripten/release_notes.html, 2020.
[9] WASI – The WebAssembly System Interface. https://wasi.

dev/, 2020.
[10] Wasmtime – A small and efficient runtime for WebAssembly

& WASI. https://wasmtime.dev/, 2020.
[11] WAVM. https://wavm.github.io/, 2020.
[12] WebAssembly. https://webassembly.org/, 2020.
[13] WebAssembly – Use Cases. https://webassembly.org/docs/

use-cases/, 2020.
[14] WebAssembly Specification. https://webassembly.github.io/

spec/core/index.html, 2020.

16

https://github.com/WebAssembly/design/blob/master/Security.md#memory-safety
https://github.com/WebAssembly/design/blob/master/Security.md#memory-safety
https://github.com/WebAssembly/design/blob/master/Security.md#memory-safety
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://nvd.nist.gov/vuln/detail/CVE-2018-14550
https://wasmer.io/
https://wasmer.io/
https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/Interacting-with-code.html#interacting-with-code-call-javascript-from-native
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/Interacting-with-code.html#interacting-with-code-call-javascript-from-native
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/Interacting-with-code.html#interacting-with-code-call-javascript-from-native
https://emscripten.org/docs/introducing_emscripten/release_notes.html
https://emscripten.org/docs/introducing_emscripten/release_notes.html
https://wasi.dev/
https://wasi.dev/
https://wasmtime.dev/
https://wavm.github.io/
https://webassembly.org/
https://webassembly.org/docs/use-cases/
https://webassembly.org/docs/use-cases/
https://webassembly.github.io/spec/core/index.html
https://webassembly.github.io/spec/core/index.html

[15] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.
Control-Flow Integrity. In Proceedings of the 12th ACM Con-
ference on Computer and Communications Security (CCS 05),
2005.

[16] Georgi Geshev Alex Plaskett, Fabian Beterke. Apple Safari
– Wasm Section Exploit. https://labs.f-secure.com/assets/

BlogFiles/apple-safari-wasm-section-vuln-write-up-2018-

04-16.pdf, 2018.
[17] Starr Andersen and Vincent Abella. Changes to Functionality

in Microsoft Windows XP Service Pack 2, Part 3: Memory
Protection Technologies, Data Execution Prevention. https:

//docs.microsoft.com/en-us/previous-versions/windows/it-

pro/windows-xp/bb457155(v=technet.10), 2004.
[18] Anonymous. Once upon a free. Phrack, 11(9), November

2001.
[19] J.F. Bastien. WebAssembly – Going public launch bug. https:

//github.com/WebAssembly/design/issues/150, 2015.
[20] John Bergbom. Memory safety: old vulnerabilities be-

come new with WebAssembly. https://www.forcepoint.com/

sites/default/files/resources/files/report-web-assembly-

memory-safety-en.pdf, 2018.
[21] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael

Franz, Stefan Brunthaler, and Mathias Payer. Control-Flow
Integrity: Precision, Security, and Performance. ACM Comput.
Surv., 50(1), 2017.

[22] Nicholas Carlini, Antonio Barresi, Mathias Payer, David A.
Wagner, and Thomas R. Gross. Control-Flow Bending: On
the Effectiveness of Control-Flow Integrity. In Proceedings of
the 24th USENIX Security Symposium (USENIX Security 15),
2015.

[23] Lin Clark. Standardizing WASI: A system interface to run Web-
Assembly outside the web. https://hacks.mozilla.org/2019/
03/standardizing-wasi-a-webassembly-system-interface/,
2019.

[24] Crispan Cowan, Calton Pu, Dave Maier, Heather Hinton,
Jonathan Walpole, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, and Qian Zhang. StackGuard: Automatic Adap-
tive Detection and Prevention of Buffer-Overflow Attacks. In
Proceedings of the 7th USENIX Security Symposium (USENIX
Security 98), 1998.

[25] Frank Denis. WebAssembly doesn’t make unsafe languages
safe (yet). https://00f.net/2018/11/25/webassembly-doesnt-

make-unsafe-languages-safe/, 2018.
[26] Craig Disselkoen, John Renner, Conrad Watt, Tal Garfinkel,

Amit Levy, and Deian Stefan. Position Paper: Progressive
Memory Safety for WebAssembly. In Proceedings of the
8th International Workshop on Hardware and Architectural
Support for Security and Privacy, 2019.

[27] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard
Shrobe, Martin Rinard, Hamed Okhravi, and Stelios Sidiroglou-
Douskos. Control Jujutsu: On the Weaknesses of Fine-Grained
Control Flow Integrity. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Secu-
rity (CCS ’15), 2015.

[28] Jonathan Foote. Hijacking the control flow of a WebAssembly
program. https://www.fastly.com/blog/hijacking-control-

flow-webassembly-program, 2019.

[29] William Fu, Raymond Lin, and Daniel Inge. TaintAssembly:
Taint-Based Information Flow Control Tracking for WebAs-
sembly. http://arxiv.org/abs/1802.01050, 2018.

[30] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval
Yarom. Drive-By Key-Extraction Cache Attacks from Portable
Code. In Proceedings of the International Conference on Ap-
plied Cryptography and Network Security (ACNS), 2018.

[31] Robbert Gurdeep Singh and Christophe Scholliers. WAR-
Duino: A Dynamic WebAssembly Virtual Machine for Pro-
gramming Microcontrollers. In Proceedings of the 16th ACM
SIGPLAN International Conference on Managed Program-
ming Languages and Runtimes (MPLR 2019), 2019.

[32] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L.
Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon
Zakai, and JF Bastien. Bringing the Web Up to Speed with
WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation (PLDI 2017), 2017.

[33] Adam Hall and Umakishore Ramachandran. An Execution
Model for Serverless Functions at the Edge. In Proceedings of
the International Conference on Internet of Things Design and
Implementation (IoTDI ’19), 2019.

[34] Pat Hickey. Edge programming with Rust and WebAssem-
bly. https://www.fastly.com/blog/edge-programming-rust-

web-assembly.
[35] Pat Hickey. Announcing Lucet: Fastly’s native WebAssem-

bly compiler and runtime. https://www.fastly.com/blog/

announcing- lucet- fastly- native- webassembly- compiler-

runtime, 2019.
[36] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and

Mathias Payer. Block oriented programming: Automating
data-only attacks. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS
’18), 2018.

[37] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun
Guha. Not So Fast: Analyzing the Performance of WebAs-
sembly vs. Native Code. In Proceedings of the 2019 USENIX
Annual Technical Conference (USENIX ATC ’19), July 2019.

[38] Michel Kaempf. Vudo – An object superstitiously believed to
embody magical powers. Phrack, 11(8), November 2001.

[39] Mustakimur Rahman Khandaker, Wenqing Liu, Abu Naser,
Zhi Wang, and Jie Yang. Origin-sensitive Control Flow In-
tegrity. In Proceedings of the 28th USENIX Security Sympo-
sium (USENIX Security 19), 2019.

[40] Amin Kharraz, Zane Ma, Paul Murley, Charles Lever, Joshua
Mason, Andrew Miller, Nikita Borisov, Manos Antonakakis,
and Michael Bailey. Outguard: Detecting in-browser covert
cryptocurrency mining in the wild. In Proceedings of the 2019
World Wide Web Conference (WWW ’19), 2019.

[41] Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha Moon-
samy, Martina Lindorfer, Christopher Kruegel, Herbert Bos,
and Giovanni Vigna. MineSweeper: An In-depth Look into
Drive-by Cryptocurrency Mining and Its Defense. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’18), 2018.

[42] Daniel Lehmann and Michael Pradel. Wasabi: A Framework
for Dynamically Analyzing WebAssembly. In Proceedings of
the 24th International Conference on Architectural Support

17

https://labs.f-secure.com/assets/BlogFiles/apple-safari-wasm-section-vuln-write-up-2018-04-16.pdf
https://labs.f-secure.com/assets/BlogFiles/apple-safari-wasm-section-vuln-write-up-2018-04-16.pdf
https://labs.f-secure.com/assets/BlogFiles/apple-safari-wasm-section-vuln-write-up-2018-04-16.pdf
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb457155(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb457155(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-xp/bb457155(v=technet.10)
https://github.com/WebAssembly/design/issues/150
https://github.com/WebAssembly/design/issues/150
https://www.forcepoint.com/sites/default/files/resources/files/report-web-assembly-memory-safety-en.pdf
https://www.forcepoint.com/sites/default/files/resources/files/report-web-assembly-memory-safety-en.pdf
https://www.forcepoint.com/sites/default/files/resources/files/report-web-assembly-memory-safety-en.pdf
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://00f.net/2018/11/25/webassembly-doesnt-make-unsafe-languages-safe/
https://00f.net/2018/11/25/webassembly-doesnt-make-unsafe-languages-safe/
https://www.fastly.com/blog/hijacking-control-flow-webassembly-program
https://www.fastly.com/blog/hijacking-control-flow-webassembly-program
http://arxiv.org/abs/1802.01050
https://www.fastly.com/blog/edge-programming-rust-web-assembly
https://www.fastly.com/blog/edge-programming-rust-web-assembly
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime

for Programming Languages and Operating Systems (ASPLOS
’19), 2019.

[43] Giorgi Maisuradze and Christian Rossow. Ret2spec: Specula-
tive Execution Using Return Stack Buffers. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’18), 2018.

[44] Timothy McCallum. Diving into Ethereum’s Virtual Ma-
chine (EVM): the future of Ewasm. https://hackernoon.

com/diving-into-ethereums-virtual-machine-the-future-of-

ewasm-wrk32iy, 2019.
[45] Brian McFadden, Tyler Lukasiewicz, Jeff Dileo, and Justin

Engler. NCC Group Whitepaper – Security Chasms of
WASM. https://i.blackhat.com/us-18/Thu-August-9/us-18-

Lukasiewicz-WebAssembly-A-New-World-of-Native_Exploits-

On-The-Web-wp.pdf, 2018.
[46] Marius Musch, Christian Wressnegger, Martin Johns, and Kon-

rad Rieck. New Kid on the Web: A Study on the Prevalence
of WebAssembly in the Wild. In International Conference
on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA 2019), 2019.

[47] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan
Froyd, Eric Rahm, Sorin Lerner, Hovav Shacham, and Deian
Stefan. Retrofitting Fine Grain Isolation in the Firefox Ren-
derer. In Proceedings of the 29th USENIX Security Symposium
(USENIX Security 20), 2020.

[48] Ben Niu and Gang Tan. Modular Control-Flow Integrity. In
Proceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’14),
2014.

[49] Ben Niu and Gang Tan. Per-Input Control-Flow Integrity. In
Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’15), 2015.

[50] Aleph One. Smashing the Stack for Fun and Profit. Phrack,
7(49), November 1996.

[51] PaX Team. PaX Address Space Layout Randomization
(ASLR). https://pax.grsecurity.net/docs/aslr.txt, 2002.

[52] J. Protzenko, B. Beurdouche, D. Merigoux, and K. Bhargavan.
Formally Verified Cryptographic Web Applications in WebAs-
sembly. In 2019 IEEE Symposium on Security and Privacy
(SP 2019), 2019.

[53] Andreas Rossberg. Why WebAssembly? https://medium.com/

dfinity/why-webassembly-f21967076e4, 2018.
[54] Andreas Rossberg. Multiple per-module memories for Wasm.

https://github.com/WebAssembly/multi-memory, 2019.
[55] Andreas Rossberg. Proposal for adding basic reference types.

https://github.com/WebAssembly/reference-types, 2019.
[56] Jan Rüth, Torsten Zimmermann, Konrad Wolsing, and Oliver

Hohlfeld. Digging into browser-based crypto mining. In
Proceedings of the Internet Measurement Conference 2018
(IMC ’18), 2018.

[57] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas
Davi, Ahmad-Reza Sadeghi, and Thorsten Holz. Counterfeit
Object-Oriented Programming: On the Difficulty of Preventing
Code Reuse Attacks in C++ Applications. In 2015 IEEE
Symposium on Security and Privacy (SP 2015), 2015.

[58] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Na-
gendra Modadugu, and Dan Boneh. On the Effectiveness of

Address-Space Randomization. In Proceedings of the 11th
ACM Conference on Computer and Communications Security
(CCS ’04), 2004.

[59] Natalie Silvanovich. The Problems and Promise of WebAssem-
bly. https://googleprojectzero.blogspot.com/2018/08/the-

problems-and-promise-of-webassembly.html, 2018.
[60] Aron Szanto, Timothy Tamm, and Artidoro Pagnoni. Taint

Tracking for WebAssembly. https://arxiv.org/abs/1807.

08349, 2018.
[61] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song.

SoK: Eternal War in Memory. In 2013 IEEE Symposium on
Security and Privacy (SP 2013), 2013.

[62] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen
Checkoway, Úlfar Erlingsson, Luis Lozano, and Geoff Pike. En-
forcing forward-edge control-flow integrity in GCC & LLVM.
In Proceedings of the 23rd USENIX Security Symposium
(USENIX Security 14), August 2014.

[63] Victor van der Veen, Dennis Andriesse, Enes Göktaundefined,
Ben Gras, Lionel Sambuc, Asia Slowinska, Herbert Bos, and
Cristiano Giuffrida. Practical Context-Sensitive CFI. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS ’15), 2015.

[64] Kenton Varda. WebAssembly on Cloudflare Workers. https://
blog.cloudflare.com/webassembly-on-cloudflare-workers/,
2018.

[65] Luke Wagner. WebAssembly consensus and end of Browser
Preview. https://lists.w3.org/Archives/Public/public-

webassembly/2017Feb/0002.html, 2017.
[66] Wenhao Wang, Benjamin Ferrell, Xiaoyang Xu, Kevin W

Hamlen, and Shuang Hao. SEISMIC: SEcure In-lined Script
Monitors for Interrupting Cryptojacks. In 24th European Sym-
posium on Research in Computer Security (ESORICS 2018),
2018.

[67] Conrad Watt. Mechanising and Verifying the WebAssembly
Specification. In Proceedings of the 7th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs (CPP

’18), 2018.
[68] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi,

and Deian Stefan. CT-Wasm: Type-Driven Secure Cryptog-
raphy for the Web Ecosystem. Proc. ACM Program. Lang.,
3(POPL), January 2019.

[69] Xiaoyang Xu, Masoud Ghaffarinia, Wenhao Wang, Kevin W.
Hamlen, and Zhiqiang Lin. CONFIRM: Evaluating Compati-
bility and Relevance of Control-flow Integrity Protections for
Modern Software. In Proceedings of the 28th USENIX Security
Symposium (USENIX Security 19), August 2019.

[70] Alon Zakai. Emscripten and the LLVM WebAssembly back-
end. https://v8.dev/blog/emscripten-llvm-wasm, 2019.

[71] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szek-
eres, Stephen McCamant, Dawn Song, and Wei Zou. Practical
Control Flow Integrity and Randomization for Binary Executa-
bles. In 2013 IEEE Symposium on Security and Privacy (SP
2013), 2013.

[72] Mingwei Zhang and R. Sekar. Control Flow Integrity for
COTS Binaries. In Proceedings of the 22nd USENIX Security
Symposium (USENIX Security 13), 2013.

18

https://hackernoon.com/diving-into-ethereums-virtual-machine-the-future-of-ewasm-wrk32iy
https://hackernoon.com/diving-into-ethereums-virtual-machine-the-future-of-ewasm-wrk32iy
https://hackernoon.com/diving-into-ethereums-virtual-machine-the-future-of-ewasm-wrk32iy
https://i.blackhat.com/us-18/Thu-August-9/us-18-Lukasiewicz-WebAssembly-A-New-World-of-Native_Exploits-On-The-Web-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Lukasiewicz-WebAssembly-A-New-World-of-Native_Exploits-On-The-Web-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Lukasiewicz-WebAssembly-A-New-World-of-Native_Exploits-On-The-Web-wp.pdf
https://pax.grsecurity.net/docs/aslr.txt
https://medium.com/dfinity/why-webassembly-f21967076e4
https://medium.com/dfinity/why-webassembly-f21967076e4
https://github.com/WebAssembly/multi-memory
https://github.com/WebAssembly/reference-types
https://googleprojectzero.blogspot.com/2018/08/the-problems-and-promise-of-webassembly.html
https://googleprojectzero.blogspot.com/2018/08/the-problems-and-promise-of-webassembly.html
https://arxiv.org/abs/1807.08349
https://arxiv.org/abs/1807.08349
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://lists.w3.org/Archives/Public/public-webassembly/2017Feb/0002.html
https://lists.w3.org/Archives/Public/public-webassembly/2017Feb/0002.html
https://v8.dev/blog/emscripten-llvm-wasm

	Introduction
	Background on WebAssembly
	Security Analysis of Linear Memory
	Managed vs. Unmanaged Data
	Memory Layout
	Memory Protections

	Attack Primitives
	Obtaining a Write Primitive
	Stack-based Buffer Overflow
	Stack Overflow
	Heap Metadata Corruption

	Overwriting Data
	Overwriting Stack Data
	Overwriting Heap Data
	Overwriting ``Constant'' Data

	Triggering Unexpected Behavior
	Redirecting Indirect Calls
	Code Injection into Host Environment
	Application-specific Data Overwrite

	End-to-End Attacks
	Cross-Site Scripting in Browsers
	Remote Code Execution in Node.js
	Arbitrary File Write in Stand-alone VM

	Quantitative Evaluation
	Experimental Setup and Analysis Process
	Measuring Unmanaged Stack Usage
	Measuring Indirect Calls and Targets
	Comparing with Existing CFI Policies

	Discussion of Mitigations
	WebAssembly Language
	Compilers and Tooling
	Application and Library Developers

	Related Work
	Conclusion

