
Published in 35th USENIX Security Symposium, Baltimore, MD, USA, August 12 – 14, 2026

SafeFFI: Efficient Sanitization at the Boundary Between Safe and Unsafe Code in
Rust and Mixed-Language Applications

Oliver Braunsdorf1, Tim Lange1, Konrad Hohentanner2, Julian Horsch2, and Johannes Kinder1

1Ludwig-Maximilians-Universität München, Germany
2Fraunhofer AISEC, Germany

Abstract
Unsafe Rust code is necessary for interoperability with

C/C++ libraries and implementing low-level data structures,
but it can cause memory safety violations in otherwise
memory-safe Rust programs. Sanitizers can catch such mem-
ory errors at run time, but introduce many unnecessary checks
even for memory accesses guaranteed safe by the Rust type
system. We introduce SafeFFI, a system for optimizing mem-
ory safety instrumentation in Rust binaries such that checks
occur at the boundary between unsafe and safe code, handing
over the enforcement of memory safety from the sanitizer
to the Rust type system. Unlike previous approaches, our
design avoids expensive whole-program analysis; hence, it
incurs significantly less compile-time overhead (2.01× com-
pared to over 5.91×). On a collection of popular Rust crates,
SafeFFI reduces sanitizer checks by up to 79.63%, while still
detecting all memory safety violations in our dataset of known
vulnerable Rust code.

1 Introduction

Memory corruptions caused by unsafe programming lan-
guages such as C and C++ remain a major source of crit-
ical software vulnerabilities. Memory bugs regularly take
top spots in the lists of most dangerous [32] and known ex-
ploited weaknesses [31], and studies by Google [13, 45] and
Microsoft [29] indicate that around 70% of their severe bugs
are caused by memory unsafety.

In recent years, the Rust programming language has gained
traction as a safe-by-construction solution for newly devel-
oped software. Securing existing C/C++ programs by rewrit-
ing them in safe languages requires substantial development
effort, however. Despite recent efforts to translate legacy code
bases to Rust [9, 10, 51], we can expect C/C++ code to be
relied on for the foreseeable future. Thus, in practice, Rust
applications may actually be mixed language applications
(MLAs) of Rust code linked against C/C++ code—or vice
versa—via a foreign function interface (FFI). In this situation,

the safety guarantees of Rust may be compromised by un-
safe operations in foreign code. But even pure Rust code can
contain unsafe code, marked via the unsafe keyword, which
allows developers to violate Rust’s strict typing rules to im-
plement efficient algorithms and data structures or hardware
interactions. Thus, be it from foreign functions or explicitly
marked unsafe code regions, Rust bears the risk of memory
safety violations originating in unsafe code that potentially
affect the whole code base, even safe code [17, 28].

Both C/C++ and unsafe Rust code can be protected by
applying memory safety sanitizers [43, 46] to the whole
code base, which transparently introduce run-time checks
for memory operations. While sanitizers such as AddressSan-
itizer (ASan) [41] and Hardware-assisted AddressSanitizer
(HWASan) [42] do not require any source code changes and
can detect most memory safety violations [46], they introduce
a significant run-time overhead by inserting checks for ev-
ery pointer dereference in the code. However, many of these
checks are unnecessary: a pointer dereference in Rust is guar-
anteed safe as long as the pointer is safe and cannot be affected
by unsafe code. Previous solutions for selective sanitization of
Rust code [5, 30] use whole-program static points-to analysis
to classify pointers as provably safe or potentially unsafe and
then elide checks for an under-approximation of safe point-
ers. While theoretically sound, this approach incurs significant
compile-time overhead and misses optimization opportunities.
In contrast, our approach relies on efficient local reasoning
about pointer types and their safety guarantees.

In this paper, we present SafeFFI, a new approach to reduce
the overhead of memory safety sanitizers in Rust applications
and MLAs consisting of C and Rust code. SafeFFI utilizes
the fact that Rust’s strong type system enforces guarantees
for pointer types such as reference types (&T) and box types
(Box<T>), while raw pointers (*const T) are unchecked. A
key insight in our work is that the cast from a raw pointer
type to a safe pointer type forms the boundary between
sanitizer-enforced memory safety and type-system-enforced
memory safety. SafeFFI hoists and bundles checks into a sin-
gle dynamically-checked precondition, which is propagated

statically through the type system. This way, we free the
memory sanitizer from checking every pointer dereference.
Therefore, for most patterns of Rust programs, we can elide a
significant number of sanitizer checks, leading to improved
run-time performance.

We only require local reasoning for hoisting memory safety
checks, hence, we avoid expensive whole-program static anal-
ysis leading to better compile-time performance and enabling
SafeFFI to scale well on large software projects. In summary,
we make the following contributions:

• A novel concept and algorithm for combining sanitizers
for unsafe languages and type information from strongly-
typed languages to enforce memory safety in mixed code.
Our algorithm avoids expensive whole-program static
analysis and exposes bugs early by placing checks at the
location where the type system expects safety guarantees
to hold.

• A modular architecture, independent of the underlying
sanitizer, based on a modified Rust compiler that allows
for analyses across multiple intermediate representations
of Rust and LLVM to implement the concept, including
an efficient algorithm for finding potentially deallocating
functions.

• A systematic evaluation using LLVM’s widely-used sani-
tizers ASan and HWASan on popular Rust crates, known
vulnerable Rust code, and a set of real-world bench-
marks. SafeFFI effectively reduces the number of sani-
tizer checks by up to 79.63% and consequently reduces
the run-time overhead of ASan from 2.71× to 2.44× and
of HWASan from 3.18× to 2.29× while achieving bet-
ter compile-time overheads (2.01×) compared to other
state-of-the-art approaches (5.91×).

2 Background

We now introduce the necessary background on memory
safety in C/C++ and existing methods for run-time saniti-
zation (§2.1), followed by revisiting the memory safety guar-
antees in Rust and the impact of unsafe code (§2.2).

2.1 Memory Safety and C/C++
C and C++ remain widely used in security-critical software
but inherently lack memory safety. Memory safety violations
are classified into spatial (e.g., buffer overflows) and temporal
(e.g., use-after-free) errors. To catch memory safety bugs, san-
itizers [43,46] typically instrument code at compile time with
additional check logic to detect violations at run time. Fur-
thermore, sanitizers often use symbol interposition to redirect
function calls to instrumented versions of a library function,
e.g., for malloc, free, or memcpy. This technique is called
Interception and is especially helpful for sanitizing third party
libraries without recompiling. Sanitizers use different types of
metadata to track memory state and detect violations, typically

categorized as being either object-based [4, 14, 22, 25, 41, 42]
or pointer-based [16, 20, 34, 37]. Object-based metadata, such
as redzones [41] or memory tags [42], is associated with mem-
ory allocations and marks memory regions as valid or invalid.
Pointer-based metadata augments pointers with additional in-
formation, such as bounds [34,37] and references to temporal
metadata [35]. Since it is associated with pointers, it allows
for tracking the validity of memory accesses based on the
pointer’s state, which can enable the detection of more bug
categories, such as sub-object memory violations [46].

Two widely used memory safety sanitizers are ASan [41]
and HWASan [42], available in LLVM and GCC. ASan uses
shadow memory to maintain metadata for application mem-
ory and instruments code to place red zones around mem-
ory objects, catching out-of-bounds errors. It also poisons
freed memory and delays reuse, improving detection for
use-after-free errors at the cost of higher memory overhead.
HWASan reduces overhead by using tagged pointers and
memory tags (typically 16:1 granularity). Each block carries
a tag in shadow memory, and the upper pointer bits hold a
matching tag; a mismatch signals a violation. Employing dif-
ferent tags for freed memory and for different objects allows
HWASan to detect more types of temporal and spatial bugs
than ASan. But, due to the limited tag size, tag collisions can
occur, making all detections in HWASan probabilistic. On
ARM, HWASan commonly leverages top-byte-ignore (TBI)
to store tags in the pointer’s top byte, primarily improving
performance by not requiring pointers to be stripped before
usage, but also compatibility with non-instrumented code.

2.2 Memory Safety and Rust

Rust is a modern systems programming language that aims to
eliminate memory safety bugs through a strong static type sys-
tem. This type system is built on the principles of ownership,
borrowing, and lifetimes [19] which guarantee spatial and
temporal memory safety for safe pointer-like types. Spatial
safety in Rust is enforced either at run time or at compile-time.
For statically-sized memory objects, the size of the memory
object is known at compile-time. The Rust compiler tracks
the object’s type and its corresponding size for every safe
pointer derived from the memory object. Thus, it can stati-
cally verify that a pointer dereference is within the bounds of
the pointed-to memory object. For dynamically-sized types,
the compiler generates run-time bounds checks when index-
ing or dereferencing through a safe pointer. Temporal safety
is guaranteed by the type system which enforces that each
value is owned by exactly one variable. The compiler takes
care of generating code for the deallocation of the value at the
location where this owning variable goes out of scope which
prevents double-free errors. Lifetimes tracked statically by
the compiler ensure that references to a value do not outlive
the owner, hence preventing Use-After-Free (UAF) errors.

2

Safe Pointer-Like Types. The Rust language provides a set
of primitive safe pointer-like types which are subject to the
borrow checker and lifetime analysis. These include:

&T – shared, immutable reference,
&mut T – exclusive, mutable reference,
Box<T> – owning pointer to heap-allocated data,
[T; N] – statically-sized array,
fn, Fn – function pointers and closures,
&[T], &str – dynamically sized slice/string,
&dyn T – trait object reference, a pointer to an

object with dynamic type.

Our approach particularly focuses on the first five pointer
types, all of which have statically-sized pointees with sizes
known at compile-time. For the remainder of the paper, we
will usually refer to them summarily as safe pointers, in
contrast to raw pointers. For safe pointers that originate in
safe Rust code, the Rust compiler ensures that they are non-
null, properly aligned, and dereferenceable for the size of their
pointee-type [7]. When safe pointers are derived from raw
pointers, which may happen in unsafe code, Rust requires the
developer to guarantee those same memory safety properties.

Raw Pointers and Unsafe Code. Rust also provides an-
other primitive pointer type, called the raw pointer: *const
T and *mut T. The raw pointer type is not subject to borrow
checking or lifetime tracking. It does not provide any mem-
ory safety guarantees, thus it behaves exactly like a pointer
in C/C++ and also has the same layout. Raw pointers may
only be dereferenced inside functions or code blocks that
are marked with the unsafe keyword in Rust. Besides deref-
erencing raw pointers, unsafe Rust code also enables the
following operations which can undermine Rust’s safety guar-
antees: 1. calling other unsafe functions or foreign functions,
2. accessing mutable static variables, 3. accessing union
fields, 4. implementing unsafe traits. Those unsafe opera-
tions can undermine Rust’s type system. Thus, within unsafe
blocks, it is the programmer’s responsibility to uphold Rust’s
memory safety guarantees. Because programmers can make
mistakes in unsafe code, Rust programs might introduce
memory safety violations despite Rust’s strong type system.
Miri [17] is a popular tool in the Rust ecosystem for detecting
misuses of unsafe code that undermine Rust’s type system
and can lead to undefined behavior including memory safety
violations. Since Miri is based on an interpreter for Rust’s
Mid-Level Intermediate Representation (MIR) and employs
heavy-weight dynamic analyses, it introduces a significant
performance overhead. As an alternative for memory safety,
the Rust compiler offers the possibility of using sanitizers (see
§2.1). However, these memory safety sanitizers lack aware-
ness of Rust’s static guarantees and therefore redundantly
check even safe Rust code. This motivates our approach
to combine Rust’s compile-time guarantees with selective
run-time checks of sanitizers.

Memory Safety in Mixed-Language Applications. A typ-
ical scenario of using unsafe code in Rust is the invocation of
foreign functions written in other languages like C/C++. Rust
provides a Foreign Function Interface (FFI) for declaring or
exporting a function symbol from/to a foreign library, which
later is linked in by the linker. Many real-world applications
combine Rust with existing C or C++ code (or vice versa)
this way; we refer to these as Mixed-Language Applications
(MLAs). Raw pointers are used heavily to exchange data
across the FFI boundary because they have the same layout in
Rust as in C/C++. Bugs in the FFI definition or in the C/C++
code parts of an MLA can undermine Rust’s guarantees and
thus affect the safety of the whole application [23]. Even
worse, cross-language vulnerabilities can be vehicles for by-
passing hardening mechanisms for C/C++ like Control-Flow
Integrity (CFI) [28, 38]. Unfortunately, Miri has very limited
support for mixed-language scenarios because it only inter-
prets Rust code. Memory safety sanitizers, on the other hand,
are applicable to MLAs and protect the whole application
because Rust code and C/C++ code can both be compiled to
LLVM IR code, which sanitizers like ASan and HWASan can
instrument.

3 Threat Model

To set the scene for explaining the SafeFFI approach, we first
define our threat model, i.e., the capabilities and goals of our
attacker, the scope of SafeFFI’s protection, and the underlying
assumptions and limitations.

The attacker aims to trigger memory safety violations in
a target application with the goal to corrupt or leak data or
hijack control flow. In order to do so, the attacker is able to
supply arbitrary inputs to the application but cannot bypass
sanitizer checks (e.g., by modifying the binary itself). Memory
safety violations may be triggered by targeting memory bugs
in unsafe parts of the application, i.e., foreign code or Rust
code marked as unsafe. In detecting memory bugs, SafeFFI
inherits the capabilities and limitations of the underlying san-
itizer. For both HWASan and ASan this includes all standard
types of spatial and temporal memory bugs but excludes more
specific types, such as sub-object over- and underflows [46].
Furthermore, SafeFFI inherits limitations regarding thread
safety from the underlying sanitizer. For ASan and HWASan,
this means that a data race in the application may lead to
a data race in the sanitizer’s metadata updates. This causes
undefined behavior, which might lead to a detectable memory
safety violation but may also go undetected [41].

To provide its protections, i.e. guarantee that a Rust appli-
cation including unsafe components remains memory-safe
within the defined bounds, SafeFFI relies on a few fundamen-
tal assumptions:
Type System Soundness. We assume that the Rust type sys-
tem is sound and safe in the absence of unsafe components
(i.e., C/C++ and unsafe Rust code).

3

LLVM Instrumentation

rustc

Annotated

LLVM IR isSafePtr(p)

Sanitizer Pass

Rust

Code

C

Code

clang

LLVM IR

Protected

Optimized

Executable

Protected

Optimized

Binary

Link

MIR

MIR Lowering

Sanitizer

Runtime

safeffi_ensure()

Pointer Type

Annotation

Dealloc Annotation

(modular)

Call Graph Generation (modular)

Pointer Cast

Detection

SafeFFI Lib

Pointer Type

Analysis

Check

Hoisting

Figure 1: SafeFFI architecture overview. Rust and C/C++ are compiled to LLVM IR, a common intermediate representation for
sanitizer instrumentation. The orange boxes depict our extensions to rustc and LLVM in this compilation workflow.

Toolchain Correctness. We assume that the compiler tool-
chain implementation is correct.
Sanitizer Correctness and Integrity. We assume that the
underlying sanitizer works correctly and that its metadata is
safe against the attacker.
Run-time Environment Integrity. We assume that the en-
vironment of the application process is intact and uncompro-
mised, especially including the OS kernel and mappings.

SafeFFI only targets memory safety bugs and typical
software-based attacks, which implies some basic limitations:
Logic and Type Safety Errors. SafeFFI only covers memory
safety issues. Incorrect program behavior that does not violate
memory safety cannot be detected or prevented. This includes
type safety violations from unsafe code that do not lead to
memory safety violations detectable by sanitizers.
Side-Channels and Hardware. Attacks based on side chan-
nels, speculative execution, and hardware fault injection are
out of scope for the considered sanitizers and SafeFFI.

4 SafeFFI Overview

The architecture of SafeFFI, shown in Figure 1, is imple-
mented as an extension of the Rust compiler pipeline. We
extend the Rust compiler with an analysis of Rust’s MIR to
determine the types of all pointers, locate pointer cast loca-
tions, and generate corresponding annotations for the LLVM
IR code that is lowered from the MIR. We extend LLVM with
our new SafeFFI-Lib which consumes the pointer type anno-
tation, conducts a pointer type analysis on LLVM IR level,
inserts additional sanitizer checks at the boundary between
safe and unsafe pointer types, and provides a simple API for
existing sanitizers to elide checks for provably safe pointer
types. A detailed description of the architecture is given in §6.

Example. We intuitively illustrate the effect of SafeFFI us-
ing the example in Figure 2, which contains Rust source code
of a function foo, the corresponding LLVM code including
sanitizer checks, and the same LLVM code after optimiza-

tion with SafeFFI. In its normal operation, the sanitizer inserts
sanitizer_check() for the pointer operands in every LLVM
load or store instruction. By using information from Rust’s
type system, SafeFFI can deduce that pointers a, b, c, and d
are all derived from a Rust reference safe1. The Rust type
system is guaranteeing that all derived references only ever
access memory within the bounds and lifetime of the object
they are derived from. Therefore, if we can ensure that the
requirements of Rust’s type system (see §2.2) are met for the
creation of the original reference, then all subsequent sanitizer
checks are obsolete and we can elide them.

In line 6 of the Rust source code in Figure 2a, the safe
pointer safe1: &mut SomeStruct (a mutable reference) is
created by casting from the raw pointer which has been re-
turned from calling the unsafe function c_create(). Later,
in lines 9 and 10, two more safe pointers a and b are derived
from safe1 by taking the respective addresses of the fields
defined in SomeStruct. Both are then dereferenced in line 11
to pass their pointee values to the function do_some(). Those
dereference operations correspond to the load instructions in
lines 10 and 12 of Figure 2b. One can see how the sanitizer
inserts sanitizer_check() calls before each load instruc-
tion. Because Rust’s static type system guarantees that safe1
and its derived pointers a and b only ever access the memory
object within the bounds of the SomeStruct object, those san-
itizer checks can be elided. However, to be able to rely on the
type system’s soundness, we have to ensure that its require-
ments are upheld when casting raw1 to safe1 by inserting a
sanitizer check. This is depicted by the blue arrows: SafeFFI
removes the checks before the load instructions and instead
inserts the safeffi_ensure() call in line 5 of Figure 2c.

The safeffi_ensure() function takes the raw1 pointer as
input as well as the size of the SomeStruct type (in this case
16) and internally uses the existing check implementation
provided by LLVM’s sanitizers to validate that the memory
object behind raw1 is still allocated, has at least the expected
size, and that the pointer has the correct provenance for this
object. If the safeffi_ensure() check fails, we immediately
abort the program, pointing the developer directly to the cast

4

1 fn foo(p: &i32) {
2

3 let n: i32 = *p;
4 let raw1: *mut SomeStruct =
5 unsafe { c_create(n) };
6 let safe1: &mut SomeStruct =
7 unsafe { &mut *raw1 };
8

9 let a: &mut i32 = &mut safe1.a;
10 let b: &mut i32 = &mut safe1.b;
11 do_some(*a, *b);
12

13

14

15 loop {
16 let c: &i32 = derive(a);
17 let d: &i32 = derive(b);
18 if *c + *d == 85 {
19 break;
20 }
21 }
22 }
23

24

25

26

27

28

29

30

31

32

(a) Rust code.

1 define @foo(ptr %p) {
2 start:
3 sanitizer_check(%p)
4 %n = load i32, ptr %p
5 %raw1 = call ptr @c_create(i32 %n)
6

7 %a = getelementptr ptr %raw1, i64 8
8 %b = getelementptr ptr %raw1, i64 12
9 sanitizer_check(%a)

10 %0 = load i32, ptr %a
11 sanitizer_check(%b)
12 %1 = load i32, ptr %b
13 call @do_some(i32 %0, i32 %1)
14 br label %bb3
15

16

17 bb3:
18 %c = call ptr @derive(ptr %0)
19 %d = call ptr @derive(ptr %1)
20 sanitizer_check(%c)
21 %_14 = load i32, ptr %c
22 sanitizer_check(%d)
23 %_15 = load i32, ptr %d
24 %_13 = add i32 %_15, %_14
25 %2 = icmp eq i32 %_13, 85
26 br i1 %2, label %bb6, label %bb3
27

28 bb6:
29 ret void
30 }
31

32

(b) LLVM IR with sanitizer checks.

1 define @foo(ptr %p safePtrArg(4)) {
2 start:
3 %n = load i32, ptr %p
4 %raw1 = call @c_create(i32 %n) !raw
5 %raw1_safe = call safeffi_ensure(ptr raw1,

i64 16) !safe
6 %a = getelementptr ptr %raw1_safe, i64 8
7 %b = getelementptr ptr %raw1_safe, i64 12
8 %0 = load i32, ptr %a
9 %1 = load i32, ptr %b

10 call @do_some(i32 %0, i32 %1)
11 br label %bb3
12

13

14

15

16 bb3:
17 %c = call ptr @derive(ptr %0) !safe
18 %d = call ptr @derive(ptr %1) !safe
19 %_14 = load i32, ptr %c
20 %_15 = load i32, ptr %d
21 %_13 = add i32 %_15, %_14
22 %2 = icmp eq i32 %_13, 85
23 br i1 %2, label %bb6, label %bb3
24

25

26

27

28 bb6:
29 ret void
30 }
31

(c) IR with sanitizer checks hoisted by SafeFFI.

x

x

Figure 2: A simplified example illustrating SafeFFI’s annotations and optimizations. Blue arrows indicate hoisting of checks for
locally-created safe pointers. For safe pointers received via parameters or call returns, orange arrows indicate elision of checks.

location. This is a specific advantage of SafeFFI: it can reveal
a misuse of unsafe code or FFI code much earlier compared
to normal sanitizer operation. Regular sanitizers only fail
at the dereference location which might happen much later,
e.g., in a subsequent function call, making the error harder to
debug.

If the safeffi_ensure() succeeds then it returns a new
LLVM value (%raw1_safe in the example) representing the
casted safe version. Usually, the Rust compiler would only
generate one LLVM variable to represent both the raw and the
safe pointer as an optimization, because they have the same
machine layout and carry the same value. SafeFFI allows us
instead to differentiate raw and safe pointers on LLVM IR
level and to elide sanitizer checks accordingly.

In the following section, we give a detailed explanation of
our approach to determine in which cases sanitizer checks
can be elided and when the boundary between raw and safe
pointers needs validation at run time by inserting additional
sanitizer checks.

5 Type-System-Guided Sanitizer Checks

Now we explain our concept in detail. We begin by motivating
pointer casts as logical boundaries for memory safety enforce-
ment (§5.1). We introduce our method for using function-local

type information to hoist checks to cast locations while elid-
ing sanitizer checks for safe pointer-like types with statically-
sized pointees (§5.2) and discuss additional measures required
for full temporal memory safety (§5.3). Finally, we show how
to leverage the Rust type system to reason about memory
safety across function calls without expensive whole-program
analysis (§5.4). Note that this design includes full support
for the presence of unsafe foreign code in mixed-language
scenarios.

5.1 Memory Safety Enforcement Boundaries
Incorrect memory access through raw pointers can cause
memory bugs even in safe Rust [30]. Raw pointer deref-
erences are dangerous because Rust does not enforce any
guarantees for raw pointers. For safe pointer-like types, how-
ever, the Rust compiler provides the following memory safety
guarantees (see §2.2):

• Spatial safety: every read or write through such a pointer
is guaranteed to only access memory inside the bounds
of its pointee type.

• Temporal safety: no safe pointer-like can exist outside
the lifetime of its original pointed-to memory object.

SafeFFI is designed to elide sanitizer checks for safe pointer-
like types with statically-sized pointees whose sizes are
known at compile time, i.e., Rust references (&T and &mut T),

5

Box pointers (Box<T>), static arrays ([T;N], and function
pointers). For simplicity, we will refer to them as safe point-
ers, as opposed to raw pointers. There are multiple ways
to create and derive safe pointers in Rust. All of them are
checked by the Rust compiler, except for the cast from a raw
pointer to a safe pointer. Casts from raw to safe pointers can
only happen in unsafe Rust code, where the Rust compiler
does not check that the raw pointer adheres to the require-
ments of the safe pointer type. Thus, a cast of an invalid
raw pointer can undermine the memory safety guarantees of
Rust’s type system.

The key idea behind SafeFFI is that using sanitizer checks,
we can dynamically guarantee validity for a raw pointer at the
time of the cast and then continue to rely on the guarantees
statically enforced by the Rust compiler for the remaining
lifetime of the safe pointer after the cast. Hence, we consider
these cast operations to form the boundary between memory
safety enforcement by the sanitizer and the Rust compiler.
Casts from raw to safe pointers are the central point of focus
for SafeFFI, and in the following we show how to hoist the
sanitizer checks for safe pointers by protecting this boundary
with a strategically placed sanitizer check.

5.2 Local Type Analysis for Check Hoisting

The basic idea of SafeFFI’s optimizations is to use function-
local pointer type information provided by annotation of local
variables, globals, and arguments to reduce the number of
sanitizer checks for safe pointers. Usually, the sanitizer in-
serts checks at every instruction that dereferences a pointer.
For raw pointers, we just keep all the original checks in place
that the sanitizer inserted. For safe pointers, we hoist the
checks from the dereference location up to the beginning
of their scope, where they are created. Then, based on the
rules enforced by Rust’s type system, we can safely elide all
subsequent checks.

We differentiate the following cases of how a safe pointer
can be created in the current function’s scope:
(a) Allocating a new stack object. On LLVM-IR level this

corresponds to an alloca instruction which returns a
pointer variable.

(b) Deriving a reference from a local stack object or from
another safe Rust reference.

(c) Casting a raw pointer to a reference via a Reborrow
operation (safe_ptr: &T = &*raw_ptr) or to a Box
via Box<T>::from_raw(raw_ptr). Although its syntax
looks like a dereference-and-take-address operation, a
Reborrow just creates a reference that points to the same
memory object as pointer a1, without dereferencing.

(d) Loading a safe pointer from memory, e.g., as a field of
another object that resides in memory.

In cases (a) and (b), Rust takes care of memory management
through its lifetime and borrowing mechanics and no explicit
raw pointers are involved, so we can elide all checks. In case

(c), we have to ensure the validity of the raw pointer before
we can safely cast it to a safe pointer and rely on the Rust
compiler for memory safety. To check the validity of safe
pointers casted from raw pointers, SafeFFI emits a call to
safeffi_ensure(), a custom dynamic check function using
sanitizer metadata to determine whether the object pointed
to by the raw pointer is still alive and is at least of the size
of the pointee type T. For case (d), we also need to insert
a sanitizer check. Since unsafe Rust or foreign code can
arbitrarily modify memory contents, pointers stored on either
heap or stack might be corrupted, so we must check their
validity when they are loaded into the current function scope.

As a result, we elide sanitizer checks at dereference loca-
tions for safe pointers; if the pointer is not safe by construc-
tion, we insert a sanitizer check at the creation site of the safe
pointer, effectively combining and hoisting the checks. This
is illustrated by the arrows in Figure 2. The run-time benefit
of removing the sanitizer checks is most pronounced when
checks can be hoisted out of loops.

Spatial Safety. The inserted sanitizer check enforces the
size requirement of the safe pointer type at the cast site.
Once the safe pointer is created, we can rely on the Rust
type system to ensure that all subsequent accesses through
the safe pointer in the current function are within the bounds
of the type, as explained above. Thus, SafeFFI ensures spatial
safety for the whole scope of the safe pointer (to the extent
that the underlying sanitizer guarantees it).

Temporal Safety. For reasoning about temporal safety,
we distinguish Free-Before-Scope vulnerabilities from Free-
During-Scope vulnerabilities. So far, we combined the Rust
type system with dynamic sanitizer checks to ensure that any
safe pointer points to a memory object that is alive at the
start of the pointer’s scope. Thus, SafeFFI always reliably
detects all temporal vulnerabilities where the memory ob-
ject is deallocated before the start of the pointer’s scope, i.e.,
Free-Before-Scope vulnerabilities. If the memory object is
deallocated during the safe pointer’s scope, e.g., through an
alias pointer, this can cause a Free-During-Scope vulnera-
bility. To also catch these, SafeFFI provides the option for
further checks, as we explain in the next section.

5.3 Catching Free-During-Scope Violations
For Free-During-Scope violations, we need to check that the
safe pointer remains valid until the end of its scope. SafeFFI
provides the option to detect Free-During-Scope violations
which allows developers to trade safety for run-time and
compile-time performance.

In Rust, memory may be deallocated either by popping a
stack frame at the end of a function scope or by calling a
heap deallocation function. We reason about a safe pointer’s
local scope within the current function—we will extend our

6

Algorithm 1: Insert additional heap checks for Free-
During-Scope violations.

Input: A Rust function F and the set DeallocFns of
functions that may (transitively) lead to heap
deallocation

1 foreach memInst ∈ MemoryInstructions(F) do
2 foreach callInst ∈ memInst.operands() do
3 if hasSafePointerOperand(memInst) then
4 if callInst.callee() ∈ DeallocFns then
5 if IsReachable(memInst, callInst) then
6 InsertCheckAt(memInst, callInst);

reasoning across function calls in §5.4. Because the safe
pointer’s scope is limited to the current function, this stack
frame is guaranteed to not be deallocated within the entire
scope. Thus, only heap deallocations remain for potential
Free-During-Scope violations.

Heap deallocation requires calling __rust_dealloc() or
libc::free(). Hence, a safe pointer can only become dan-
gling within its scope in the current function if there is a call
to one of those deallocation functions in between. To detect
Free-During-Scope violations, SafeFFI inserts an additional
safeffi_ensure() check for every dereference of the safe
pointer that is reachable from a call to a potential deallocation
function. Algorithm 1 for inserting those heap checks can
be implemented efficiently within LLVM and is linear in the
number of instructions in the analyzed function. To determine
the set DeallocFns of functions that may transitively lead to a
heap deallocation, we develop an efficient and sound analy-
sis for constructing the call graph, which executes on-the-fly
during compilation (see §6.4 for a detailed description).

In single-threaded applications, inserting additional
safeffi_ensure() checks guarantees that each safe pointer
remains valid throughout its scope, allowing SafeFFI to reli-
ably detect Free-During-Scope violations. For Free-During-
Scope violations, check hoisting is not thread-safe, however. A
deallocation could occur concurrently between the check and
the subsequent dereference, which could allow a Free-During-
Scope violation to go undetected. Nevertheless, SafeFFI re-
mains fully compatible with multi-threaded programs and is
guaranteed to detect spatial and Free-Before-Scope violations
to the extent that the underlying sanitizer does.

5.4 Interprocedural Memory Safety
Intraprocedurally, SafeFFI establishes a safety invariant for
every safe pointer created in each function: each safe
pointer created in the current function is guaranteed to be
safe to dereference for its whole scope in the current function.
To guarantee whole-program memory safety, we also need to
ensure validity of safe pointers passed across function calls.

Pointer Arguments. SafeFFI generates annotations for the
function signature during lowering from MIR to LLVM
IR, emitting attributes for pointer parameters (e.g., see the
safePtrArg attribute in line 1 of Figure 2c for the parame-
ter p: &i32). When the currently analyzed Rust function is
called from another Rust function, the type system guarantees
that the argument types in the call and the function signature
match, so functions with safe pointer arguments will only
ever receive safe pointer values from the caller. Because of
our established memory safety invariant, we know that safe
pointers are indeed safe to dereference for the scope of the
caller, which means they are also valid for the whole scope of
the callee.

For Rust functions with external visibility, which can be
called by foreign code, invalid data could be passed to a pa-
rameter of a safe pointer type, because linking foreign code
requires only ABI compatibility and may ignore types. There-
fore, SafeFFI inserts an additional safeffi_ensure() check
in the prologue of functions with external visibility to ensure
that the safe pointer is indeed valid. Hence, we can elide all
original sanitizer checks for safe parameters.

Pointer Return Values. Similar to the previous case, we
can rely on the Rust type system to guarantee that the return
value of a function call is of the correct type. Because of our
invariant, we can guarantee that a safe pointer returned from
a function call is valid until the end of its scope in the callee.
And if the pointer is valid at the end of the callee, then it is
also valid at the return in the caller—with one exceptional
case that needs special handling.

Each return instruction is also the deallocation of the
callee’s stack frame. If the safe pointer is derived from a
raw pointer pointing to an object on that same stack frame,
then this creates a stack Use-After-Return (UAR) violation
because by the time the safe pointer is received in the caller
function, the pointed-to memory object on the callee’s stack
frame is already deallocated. Figure 3 shows an example of
such a stack temporal violation. The call to derive() returns
a safe pointer that has been derived from a raw pointer point-
ing to an object on the stack frame. Because the developer
did not choose the correct lifetime for the returned pointer in
the derive() signature and foreign C code is involved, the
Rust compiler has no chance at preventing this UAR viola-
tion. To catch such violations, SafeFFI inserts an additional
safeffi_ensure() check after every function call that re-
turns a safe pointer. Thus, we can now guarantee that the
safe pointer is valid for the scope in the caller function.

6 SafeFFI’s Implementation

In this section, we describe the architecture and implemen-
tation details of our approach. We implemented SafeFFI as
modifications to the Rust compiler version 1.52.0 and LLVM

7

1 // C code
2 void *c_derive(int *n) {
3 int *p = n;
4 ...
5 return p;
6 }
7

8 // Rust code
9 fn derive(_: &'a i32) -> &'a i32 {

10 let n = 42;
11 // p points to n on the stack
12 let p: *const i32 = unsafe { c_derive(&n as *const i32) };
13 __safeffi_ensure(p, sizeof(i32));
14 // at this point, *p is still valid, so cast check succeeds
15 let p_safe: &i32 = unsafe { &*p };
16 return p_safe;
17 // n is deallocated here, so pointer p_safe is now dangling
18 }
19

20 fn foo() {
21 ...
22 let b: &i32 = derive(a);
23 // additional check catches invalid pointer
24 __safeffi_ensure(b, sizeof(i32));
25

26 }

Figure 3: Example of a stack temporal violation that SafeFFI
catches by inserting an additional sanitizer check after the
pointer returned to the caller function foo().

version 12. The blue boxes in Figure 1 highlight how SafeFFI
integrates into the Rust and LLVM toolchain.

First, rustc lowers Rust source code to the Mid-Level In-
termediate Representation (MIR) which is where the Rust
type system implements its static checks, also known as the
Borrow Checker. While the MIR is then lowered to LLVM
IR, SafeFFI attaches pointer type annotations and inserts san-
itizer checks for pointer casts. The LLVM IR is processed by
standard optimization and sanitizer passes and finally linked
with the sanitizer runtime. In mixed-language applications,
C code is compiled to LLVM IR and linked in the same way.
Details on each component are described in the remainder of
this section.

The goal for our architecture was to make integration with
existing sanitizers as easy as possible by requiring only min-
imal changes to the sanitizer: (i) querying pointer types via
the is_safe_pointer(Value* ptr) function provided by
SafeFFI-Lib, and (ii) providing an implementation for calls to
safeffi_ensure(void* p, u64 size). These are simply
the existing checks regulary enforced by the LLVM sanitiz-
ers ASan (__asan_region_is_poisoned()) and HWASan
(__hwasan_test_shadow()).

6.1 Pointer Type Annotation in MIR

Our goal is to know the type of every pointer in LLVM IR,
because for every pointer, the sanitizer can potentially request
the type via the isSafePtr() API of SafeFFI-Lib. Thus we
have to annotate local variables, function arguments, global
variables, and constants. We implement this by associating

LLVM metadata nodes (MDNode) with the corresponding gen-
erated LLVM instructions and LLVM Attributes for func-
tion parameter values.

For this we hook into the lowering process from MIR
to LLVM IR. The lowering process is implemented in
rustc via the visitor pattern: the rustc_codegen_ssa mod-
ule visits MIR statements and calls the functions in
rustc_codegen_llvm (the LLVM backend interface) to gen-
erate the corresponding LLVM IR. The challenge lies in the
loose connection between MIR symbols and corresponding
LLVM symbols because the lowering of an MIR symbol
depends on the target ABI of its type. The Rust compiler
differentiates between the following ABIs for any MIR type:1

• Uninhabited: a zero-sized type, that actually does not
exist in memory. No LLVM code will be generated for
it, so there is nothing to annotate.

• Scalar: a type that is represented by a single LLVM
value. If this is a pointer type (also called thin pointer),
then we annotate it accordingly. This is the case for
references, arrays, and raw pointers; but it is also the
case for all algebraic data types that are represented by a
single pointer value in LLVM IR, e.g. the Box<T> or any
custom arbitrarily nested struct that only has one field
and that field is a pointer. A special case of this is Rust’s
Union type. If it has a Scalar ABI, then we can only
annotate it as safe if all of its fields are safe pointers,
otherwise the pointer value could be manipulated in an
unsafe way through another type representation like an
integer or a raw pointer. We implemented a recursive
type analysis to detect such cases.

• ScalarPair: a type that is represented by two LLVM
scalar values, mostly dynamically-sized types (e.g.,
slices) which are lowered to fat pointers containing a
data pointer and a size value. As we cannot reason about
the dynamic size of such types, SafeFFI annotates them
as raw. We leave it to future work to find further opti-
mizations to elide checks for such types. However, in the
case of Trait objects (&dyn Trait), the second value is a
vtable pointer. Because it is lowered to a LLVM pointer,
we need to annotate it, too. Because the vtable pointer is
not user-manipulated but generated and managed by the
compiler, we always annotate it as safe.

• Vector: those are only used for LLVM’s SIMD vector
types, which are not relevant for our approach.

• Aggregate: a type that is represented by custom LLVM
structs. Those types are not pointers in MIR; however, if
a local variable of an Aggregate type is allocated on the
stack using a LLVM alloca instruction, then a LLVM
pointer is created to represent this variable. We annotate
these with a NOPTR tag and treat them as safe because
they cannot be user-manipulated.

1There is no official specification of Rust, thus we have to take the Rust
compiler’s behavior as reference: https://github.com/rust-lang/rust/
blob/1.52.0/compiler/rustc_target/src/abi/mod.rs#L847

8

https://github.com/rust-lang/rust/blob/1.52.0/compiler/rustc_target/src/abi/mod.rs#L847
https://github.com/rust-lang/rust/blob/1.52.0/compiler/rustc_target/src/abi/mod.rs#L847

The ABI of the type and the calling convention also dic-
tate how a value is passed or returned as function argument
in a call. Fortunately, the Rust compiler already annotates
parameters of the function signature if they are safe to deref-
erence using LLVM’s dereferenceable(<size>) attribute
from which we inherit our annotations.

6.2 Pointer Type Analysis on LLVM IR
A further challenge is that the ABI of MIR types also controls
how values are loaded from memory. For example, access-
ing a MIR field (let a = safe1.a) can generate different
sequences of LLVM instructions like GEP, BITCAST, LOAD.
Since the Rust compiler does not track all LLVM instructions
generated for a MIR value, SafeFFI annotates only the final
LLVM value representing the loaded MIR operand, lacking
pointer type annotations for intermediate LLVM pointer val-
ues. Thus, in SafeFFI-Lib, we implement an intra-procedural
pointer type analysis that forwards the types (safe, raw, and
NOPTR) throughout each function. This analysis initializes a
map of pointer types using the annotations inserted by the
Rust compiler for alloca Instructions, Call/Invoke instructions,
function parameters, and global variables. Then, for every re-
maining LLVM instruction that produces a pointer value (BIT-
CAST, GEP, INTTOPTR, PHI), SafeFFI forwards the type
from the operands of the instruction to the resulting pointer
based on the semantics of the instruction. The GetElement-
Pointer (GEP) instruction, which computes a derived pointer
by offsetting a base pointer, is handled more carefully: if the
base pointer is raw, the result is always marked as raw. If the
base pointer is safe and the offset arguments of the GEP in-
struction are constant, we statically compute the resulting off-
set via LLVM’s GEP::accumulateConstantOffset() and
check whether it remains within the bounds of the original
allocation. If so, SafeFFI marks the result as safe and other-
wise conservatively downgrades it to raw.

As a result, every pointer value in LLVM IR is classified as
safe, raw, or NOPTR, enabling the sanitizer to reliably query
pointer types via the isSafePtr() API.

6.3 Pointer Cast Detection in MIR
The goal of this component is to detect casts from raw pointers
to safe pointers in MIR. Our definition of safe pointers
distinguishes 3 types of pointers: References, Boxes, and
static arrays. Raw pointers cannot be casted to static arrays
(only to references to static arrays), thus, we only have to
detect the following two cases:

1. Casting a raw pointer to a Box. This always has to hap-
pen through a call to Box::from_raw(p) which is an
explicit statement in MIR.

2. Casting a raw pointer to a reference. This too is always
an explicit statement in MIR, because Rust does not
allow implicit coercion in this case [8]. In MIR this

pattern looks like q = &*p, where & denotes the creation
of a reference and * denotes a dereference operation.
Because the dereferenced p can be any kind of Rust
pointer, we have to check if p actually has the raw pointer
type to confirm this is a cast.

With both cast types, p can be a projection, e.g., the ac-
cess of a field of a (nested) struct (&*a.b.c) or an array
(&*x[y][z]). SafeFFI determines whether the inner-most el-
ement is a raw pointer by iterating over the MIR projections
until we find the type of the accessed element.

We implement the pointer cast detection by hooking into
the MIR visitor for rvalues (right-hand-side values) of MIR
Assign statements. During lowering of an rvalue, the Rust
compiler generates a series of LLVM IR instructions, the last
of which producing an LLVM Value that corresponds to the
MIR rvalue. For each rvalue, rustc keeps a mapping from
the MIR rvalue to the corresponding LLVM value. This is
where SafeFFI inserts a sanitizer check for pointer casts by
extending the series of generated LLVM instructions with a
call to the safeffi_ensure() function.

We show this effect in Figure 2. The raw pointer raw1
is lowered by generating a call to c_create() in Fig-
ure 2b line 5 and its returned LLVM value %raw1 is
mapped for the rvalue. For lowering the pointer cast
safe1 = unsafe &mut *raw1 the Rust compiler usually
just maps the rvalue to the same value as the raw pointer
because there is no difference in the LLVM representation of
a raw pointer and a safe pointer. Thus, in lines 7 and 8, the
LLVM value %raw1 is used to access the fields of the safe1
reference. One can see how this is changed by SafeFFI in
the Figure 2c lines 5-7. Our rustc modifications insert the
safeffi_ensure() call and generate a new LLVM value
%raw1_safe. SafeFFI then replaces the rvalue mapping for
cast operation, now mapping to %raw1_safe. Thus, the sub-
sequent accesses of the fields behind the safe pointer safe1
now use the LLVM value %raw1_safe.

Generating a new LLVM value for the casted pointer has
the advantage that we can now differentiate between the raw
pointer and the safe pointer on LLVM IR level and separately
reason about their safety guarantees at every subsequent loca-
tion of use in LLVM IR. Moreover, our experiments showed
that implementing cast detection on MIR level is the most
reliable way to detect casts and insert sanitizer checks consis-
tently. Other attempts to detect casts by finding differences in
pointer type annotations at LLVM IR level have shown to be
unstable because type annotations are transported via LLVM
metadata nodes which can get lost or moved around during
optimization passes in LLVM.

6.4 Callgraph-Based Deallocation Checking

As mentioned in §5.3, detecting Free-During-Scope temporal
vulnerabilities requires checking that a dereferenced pointer
has not become dangling since its creation.

9

depends

Crate A

SCC Analysis

Crate B

Crate C

append

depends
Free Functions

File

append

read

read

funcC1()
funcC2()

funcB1()
funcB2()

Figure 4: The NoFree SCC Analysis is performed on all
dependencies to determine possibly heap-deallocating func-
tions.

To address this, we implemented a call graph-based heap
deallocation analysis in LLVM to determine whether a given
function may perform a deallocation. We adopt LLVM’s de-
fault call graph analysis, which resolves static function calls,
and traverse the call graph bottom-up: functions without call
instructions are visited first. The analysis is implemented as a
LLVM SCC (strongly connected components) pass as the call
graph might contain cycles. A function is annotated as nofree
if it does not contain any calls to: (i) known deallocation func-
tions (e.g., free() or __rustc_dealloc()), (ii) functions
without a nofree annotation, or (iii) unknown callees. If any
function within an SCC cannot proven to be nofree, then the
entire SCC treated as potentially deallocating.

Another challenge is that deallocations can happen outside
the current compilation unit, e.g., in a Rust dependency or
external C library, and thus are not visible to the current com-
pilation process. To address this, we serialize the nofree anno-
tations to a persistent file after the analysis has finished for the
current compilation unit. Subsequent compilation processes
read in the serialized annotations and restore them before
running the analysis. This compositional cross-crate analysis
is illustrated in Figure 4. To support C/C++ dependencies, we
provide build flags for clang to include our analysis. When
C dependencies are dynamically linked or precompiled, we
conservatively assume all external C functions may perform
deallocations.

7 Evaluation

We implemented SafeFFI on Rust nightly-2021-02-22, which
corresponds to Rust compiler version 1.52.0 and LLVM ver-
sion 12. We integrated SafeFFI into two popular and well-
maintained sanitizers for LLVM, ASan and HWASan. After
introducing our methodology (§7.1), we present in this section
our evaluation of SafeFFI answering the following research
questions:
RQ1 How does SafeFFI affect the detection capabilities of

the sanitizer (§7.2)?

RQ2 How many sanitizer checks can SafeFFI reduce in san-
itized programs (§7.3)?

RQ3 How much can SafeFFI reduce the run-time of sani-
tized programs (§7.3)?

RQ4 Is SafeFFI’s implementation robust in the presence of
FFI interactions in MLAs (§7.4)?

RQ5 How much compile-time overhead does SafeFFI in-
cur (§7.5)?

7.1 Methodology
We conducted experiments with SafeFFI on ASan on a
x86_64 system with an AMD EPYC 9645 with 384 cores and
1.5 TB RAM running an Ubuntu 20.04 docker container. For
comparison with related work, we evaluate the same crates
(Rust’s term for packages or libraries) as RustSan [5] and
ERASan [30] and choose a common version that all three
tools can compile with their respective toolchains. The crates
Rocket and RustPython are missing because they contain a
compilation error in the version compatible with Rust 1.52.0.
Although we compare SafeFFI to ERASan and RustSan as
closely as possible, note that there are differences in the base-
line toolchain (Rust and LLVMcompiler version) and build
process, which we account for in our measurement and dis-
cussion of the results.

Because it is essential to the soundness of RustSan and
ERASan that Rust’s standard library is analyzed, we rebuild it
for all benchmarks. RustSan and ERASan require the whole
program for identifying points-to sets containing raw pointers,
so missing points-to information from the standard library
would lead to misclassifying pointers as safe, thus, leading
to false negatives. Therefore, both tools require the standard
library to be rebuilt together with each application binary to
generate complete points-to sets. SafeFFI also instruments
the standard library to detect invalid casts from raw to safe
pointers, because we cannot assume the standard library to be
memory safe. In contrast to RustSan and ERASan, however,
SafeFFI only relies on local reasoning; therefore, the standard
library could be analyzed and instrumented separately only
once. Still, for evaluation consistency and ensuring a fair
comparison, we always rebuild the standard library, with each
benchmark and for all tools and configurations. Note that this
matches RustSan’s methodology [5], whereas the published
evaluation of ERASan omits the standard library from their
evaluation [30], leading to differences in their measurements
of ERASan versus our own. We make all datasets, scripts, and
tools used in our evaluation available for reproduction.

7.2 Correctness
We answer RQ1 by testing SafeFFI on known real-world
memory safety vulnerabilities. We further include RustSan [5]
and ERASan [30] as related work and unmodified (vanilla)
HWASan and ASan as baselines. We assembled the dataset

10

Table 1: Vulnerability Detection

ID IN
T

E
R

C
E

PT
O

R

H
W

A
SA

N

Sa
fe

FF
I+

H
W

A
SA

N

A
SA

N

Sa
fe

FF
I+

A
SA

N

R
us

tS
an

E
R

A
Sa

n

CVE-2017-1000430 ✓
CVE-2018-20991 ✗
CVE-2018-21000 ✓
CVE-2019-15551 ✓ † †
CVE-2019-16140 ✓
CVE-2019-16882 ✓
CVE-2019-25009 ✓
CVE-2020-25574 ✓ † † G#
CVE-2020-25791 ✓ # # # #
CVE-2020-25792 ✓ # # # #
CVE-2020-25795 ✓ † †
CVE-2020-35858 ✗
CVE-2020-35860 ✓
CVE-2020-35861 ✓
CVE-2020-35891 ✗ † † #
CVE-2020-35892 ✓ † †
CVE-2020-35893 ✓ † †
CVE-2020-35906 ✓
CVE-2020-36434 ✗ G# #
CVE-2020-36464 ✗ † †
CVE-2020-36465 ✓
CVE-2021-25900 ✓
CVE-2021-26954 ✓ † † #
CVE-2021-28028 ✓ † † #
CVE-2021-28031 ✓
CVE-2021-29933 ✓ † † #
CVE-2021-30455 ✓ † †
CVE-2021-30457 ✗ † † G#
CVE-2021-45694 ✗ † † #
CVE-2021-45713 ✗ † G# #
CVE-2021-45720 ✗ † † #
RUSTSEC-2020-0061 ✗ # G# # # # #
RUSTSEC-2020-0091 ✗ † # # # #
RUSTSEC-2020-0097 ✗ † † G# #
RUSTSEC-2020-0167 ✓
RUSTSEC-2021-0003 ✓
RUSTSEC-2021-0031 ✗ †
RUSTSEC-2021-0033 ✓ † †
RUSTSEC-2021-0039 ✓ † †
RUSTSEC-2021-0047 ✓ † † G#
RUSTSEC-2021-0048 ✓
RUSTSEC-2021-0049 ✓ #
RUSTSEC-2021-0053 ✓
RUSTSEC-2022-0070 ✓ #
RUSTSEC-2022-0078 ✓
RUSTSEC-2023-0005 ✓ † †

 Detected G# Different Error # Not Detected †SafeFFI-specific Check
INTERCEPTOR: ✓= detected by interceptor ✗: detected by elidable check

of known vulnerabilities by merging and deduplicating the
datasets used by ERASan and RustSan. Note that the authors
of RustSan have not provided their dataset, thus we manually
reconstructed it based on the RustSec advisories.

Table 1 shows the results of our evaluation on the dataset of
known vulnerabilities. G# indicates that the vulnerability was
detected by the sanitizer, but with a different error message
than the baseline. For example, CVE-2021-30457 is both a
use-after-free and later a double-free. The former is detected
by instrumentation and susceptible to check elision while
the latter is caught by the sanitizer’s interceptor of free().

Segmentation faults and other signals are classified as not de-
tected (#), as they imply that a memory error was not caught
by the sanitizer before leading to the crash. SafeFFI reports
some vulnerabilities earlier, at the root cause, instead of at the
access location, due to the hoisting of checks (cf. §5.2); these
cases are classified as detected (). RUSTSEC-2020-0061
is a NULL pointer dereference that is not detected by any of
the approaches. This anomaly is caused by SafeFFI chang-
ing the memory layout and incidentally allowing HWASan
to detect the vulnerability; this is not a conceptual advan-
tage. Some vulnerabilities in the dataset are non-deterministic
which makes it necessary to run each compiled test binary
multiple times to observe the vulnerability reliably, especially
for HWASan because its probabilistic detection mechanism
adds further non-determinism on top, even for deterministic
vulnerabilities. If at least one run triggered the vulnerability,
we classified it as detected.

The results show that SafeFFI catches all vulnerabilities
that ASan and HWASan detect, respectively. Due to hoist-
ing checks to the memory safety boundary at the location
of pointer casts, SafeFFI is able to report 21 vulnerabilities
earlier than the underlying sanitizer, increasing debuggability.
Additionally, we have not encountered any false positives dur-
ing the evaluation of the other research questions as shown in
the following sections, which further indicates that SafeFFI
does not introduce false positives.

Limitations. While SafeFFI successfully detects all known
vulnerabilities in our dataset, we acknowledge the following
limitations. SafeFFI inserts additional checks for Free-During-
Scope vulnerabilities for every safe pointer between a call
to a potential deallocation function (see §5.3) and a subse-
quent use of the safe pointer. In single-threaded environ-
ments, SafeFFI guarantees that the object is still allocated at
the point of use. In multi-threaded programs, however, there is
a potential risk of missing Free-During-Scope vulnerabilities
if a concurrent deallocation of the pointed-to object occurs
in another thread between SafeFFI’s additional check and a
subsequent pointer dereference. This is a conceptual limita-
tion of our solution to Free-During-Scope vulnerabilities and
invites future work on multi-threaded settings.

Furthermore, SafeFFI currently has limited support for in-
line assembly and Rust’s transmute operations. Programs with
both features can be compiled and run with SafeFFI, but may
cause false negatives (missed bugs). Inline assembly is com-
pletely hidden from Rust type system checks and sanitizer
instrumentation and can arbitrarily manipulate pointers and
memory. Rust’s transmute() and transmute_copy() func-
tions allow for unchecked reinterpretation of bits, effectively
casting between any two types of the same size, including raw
and safe pointers. We expect to lift this technical limitation
in the near future by detecting transmutes resulting in safe
pointers and inserting the necessary checks.

11

lib
std

indexmap
base

64
bytes

sm
all

vec tokio

str
sim

-rs uuid

num-in
teg

er ito
a

cro
ssb

eam ryu
jso

n
ad

ler
sem

ver

ch
rono

unico
de-x

id

hash
brow

n

byteo
rder url

ran
d syn

hyper

mem
ch

r†

im
ag

e†reg
ex

fd-find bat

wasm
tim

e†

rip
grep

0%

10%

20%

30%

40%

50%
R

em
ai

ni
ng

C
he

ck
s

SafeFFI: RawPtr Checks
SafeFFI: Cast Checks

SafeFFI: Stack Checks
SafeFFI: Heap Checks

RustSan
ERASan

Figure 5: Sanitizer checks remaining after elision by SafeFFI, ERASan, and RustSan, relative to original sanitizer checks for
individual crates. For SafeFFI, checks are subdivided into remaining raw pointer checks and added cast, stack and heap checks.
† denotes crates that could not be compiled with ERASan.

Comparison. RustSan also detects all known vulnerabil-
ities in our dataset that ASan detects. In contrast, ERASan
performs significantly worse than SafeFFI and RustSan. We
investigated further and discovered that ERASan’s implemen-
tation does not properly annotate all unsafe pointers and
therefore removes checks that would have been necessary
to detect the vulnerabilities. Yet, some vulnerabilities are de-
tected because ERASan keeps ASan’s interceptors in place,
e.g., for free() and memcpy(). We reached out to the au-
thors of ERASan to debug our findings but have not received
a response.2 Regarding multi-threaded programs, note that
ERASan’s default mode also only ensures temporal safety for
single-threaded programs [30].

7.3 Effectiveness

We now provide empirical evidence that SafeFFI is effective
in reducing the number of sanitizer checks (RQ2) and, con-
sequently, the run-time overhead of the sanitizer (RQ3). We
further compare SafeFFI against RustSan and ERASan.

Elided Checks. Figure 5 shows SafeFFI’s capability to
elide ASan checks for x86_64 targets in comparison to other
approaches, measured by us. The y-axis shows the remaining
checks, i.e., lower is better. Note that the remaining checks of
crates also include checks of all their dependencies. The three
crates marked with † could not be compiled with ERASan
due to an assertion failure in their analysis.3 The amount of
checks is measured at LLVM IR level.

SafeFFI (orange bars) retains on average 3.77% of the
ASan checks because they vet raw pointers. Checks at cast
sites (cf. §5.1) contribute an additional 5.17%. Stack checks
(cf. §5.4) contribute another 4.58%, while the heap checks
for Free-During-Scope vulnerabilities (cf. §5.3) contribute
8.67%. Overall, 22.22% of checks remain on average.

2https://github.com/S2-Lab/ERASan/issues/4
3https://github.com/S2-Lab/ERASan/issues/5

With RustSan (purple bars) on average 30.70% of the ASan
checks remain in the program. SafeFFI consistently beats
RustSan across all benchmarks. ERASan (gray bars) elides
consistently more than 96% of all checks on the benchmarks,
more than both SafeFFI and RustSan. However, as discussed
in §7.2, ERASan introduces false negatives due to unsound
removal of necessary checks, likely due to an implementa-
tion bug. The high elision rates of ERASan are therefore not
comparable to the results of SafeFFI and RustSan.

For smaller crates, the number of remaining checks is dom-
inated by the checks residing in the standard library. Exclud-
ing the standard library, SafeFFI retains 18.69% on average,
with individual crates ranging from 5.89% (num-integer) to
42.75% (indexmap). Despite variations between individual
crates, we observe that the average elision rate over all crates
matches the elision rate including the standard library.

Run-time Performance. Not all checks are equally impor-
tant for the run time, checks on hot paths through the program
disproportionately impact the run time [47]. Therefore, we
also evaluate the run time on several benchmarks. Figure 6
shows the run-time overhead of ASan, SafeFFI and related
work on the benchmarks. Note due to the different build pro-
cess and toolchains, we include ASan three times, once for
each toolchain. Throughout the following section, ASan refers
to the specific version on top of which SafeFFI is built. Ad-
ditionally, we include an ASan Base configuration for each
ASan version, which only includes the overhead of ASan’s
metadata maintenance and interceptors, but no instrumenta-
tion around loads and stores; i.e., it represents the run time
with a perfect 100% elision rate and therefore marks the theo-
retical upper bound for check elision approaches.

ASan’s base run-time overhead is 2.10× on average (me-
dian: 2.22×) compared to an uninstrumented binary. ASan’s
instrumentation increases the average run-time overhead to
2.71× (median: 2.78×). SafeFFI reduces the overhead to
2.44× on average (median: 2.45×). For crates like regex and
num-integer, SafeFFI cannot improve the runtime. One rea-

12

https://github.com/S2-Lab/ERASan/issues/4
https://github.com/S2-Lab/ERASan/issues/5

indexmap
base

64
bytes

sm
all

vec

str
sim

-rs uuid

num-in
teg

er ito
a

cro
ssb

eam ryu
jso

n
ad

ler
†

sem
ver

ch
rono

unico
de-x

id

hash
brow

n

byteo
rder url

ran
d

im
ag

e
reg

ex
1x
2x
3x
4x
5x
6x
7x
8x
9x

10x
11x

R
un

tim
e

O
ve

rh
ea

d

SafeFFI Toolchain
ASan
ASan Base
ASan + SafeFFI
ASan + SafeFFI w/o Heap Checks

RustSan Toolchain
ASan
ASan Base
ASan + RustSan

ERASan Toolchain
ASan
ASan Base
ASan + ERASan

Figure 6: Run-time overhead of SafeFFI, RustSan, and ERASan relative to the baseline run-time without sanitizer. Each approach
is evaluated on their respective toolchain and depicted next to their respective version of ASan, and ASan Base (all elidable checks
disabled) as lower bound for check-elision approaches. SafeFFI without Heap Checks shows the additive run-time overhead
incurred by our additional Free-During-Scope checks (cf. §5.3). † denotes crates that could not be compiled with ERASan.

indexmap
base

64
bytes

sm
all

vec

str
sim

-rs uuid

num-in
teg

er ito
a

cro
ssb

eam ryu
jso

n
ad

ler
sem

ver

ch
rono

unico
de-x

id

hash
brow

n

byteo
rder url

ran
d

im
ag

e
reg

ex
1x

2x

3x

4x

5x

6x

7x

8x

R
un

tim
e

O
ve

rh
ea

d

ASan
ASan Base

ASan + SafeFFI
ASan + SafeFFI w/o Heap Checks

HWASan
HWASan Base

HWASan + SafeFFI
HWASan + SafeFFI w/o Heap Checks

Figure 7: Comparing the run-time overhead of SafeFFI with HWASan vs ASan as underlying sanitizer on ARM64. We show the
overhead of (HW)ASan Base (all elidable checks disabled) as lower bound for check-elision approaches. SafeFFI without Heap
Checks shows the additive run-time overhead incurred by our additional Free-During-Scope checks (cf. §5.3).

son for this discrepancy, besides hot paths, is that cast checks
inserted by SafeFFI validate ASan’s shadow memory for the
entire size of the pointed-to object, while the elided checks
only validate shadow memory for the actual access size which
might be much smaller. This makes cast checks potentially
more expensive than the elided checks and is an interesting re-
search avenue for further optimizations. In contrast, our heap
checks for Free-During-Scope violations are less expensive,
since SafeFFI only needs to check the first byte of the allo-
cated object to verify that the entire object is still allocated.
Therefore, our heap checks have less impact on the run time,
as illustrated by the small difference between SafeFFI and
SafeFFI w/o Heap Checks in Figure 6, even though they make
up 39.00% of all remaining checks.

The overhead of ASan on RustSan’s toolchain is 3.22×
on average (median: 2.94×) compared to an uninstrumented
binary, which is considerably higher than the ASan overhead

measured with our toolchain and what the original ASan au-
thors report [41]. We measured even higher numbers for ASan
on ERASan’s toolchain, with an average run-time overhead
of 3.48× (median: 3.42×). The ASan base overheads for
RustSan and ERASan are 2.52× and 2.65× on average (medi-
ans: 2.52× and 2.62×), respectively. RustSan reduces the run
time down to 2.63× on average (median: 2.58×). ERASan
reduces the overhead to 2.80× on average (median: 2.81×).

To compare the approaches, we consider the difference
between vanilla ASan and its base overhead (ASan Base)
which marks the lower bound for check elision approaches.
We call this difference the instrumentation overhead and com-
pare how much each approach can reduce the instrumentation
overhead. ERASan gets closest to the lower bound of the
instrumentation overhead (avg. 17.20%) but we stress again
that ERASan’s high elision rates and therefore run-time per-
formance come at the cost of false negatives, thus the results

13

lib
std

indexmap
base

64
bytes

sm
all

vec tokio

str
sim

-rs uuid

num-in
teg

er ito
a

cro
ssb

eam ryu
jso

n
ad

ler
sem

ver

ch
rono

unico
de-x

id

hash
brow

n

byteo
rder url

ran
d syn

hyper

mem
ch

r†

im
ag

e†reg
ex

fd-find bat

wasm
tim

e†

rip
grep

1x

5x
10x

50x
100x

500x
1000x

C
om

pi
le

-t
im

e
O

ve
rh

ea
d

SafeFFI Toolchain
ASan + SafeFFI
ASan + SafeFFI w/o Heap Checks
ASan

RustSan Toolchain
ASan + RustSan
ASan
Single CU

ERASan Toolchain
ASan + ERASan
ASan
Single CU

Figure 8: Compilation-time overhead of SafeFFI, RustSan, ERASan. Each approach is evaluated on their respective toolchain
and compared to baseline compilation-time without sanitizer. We show each approach’s overhead on top of its corresponding
ASan. SafeFFI without Heap Checks is measured show the additive compilation-overhead incurred by our call graph generation
method (cf. §6.4). For RustSan and ERASan, we also show the overhead of their modified single-compilation-unit build process
(Single CU). Note that the scale is logarithmic to accommodate large overheads of the related work. † denotes crates that could
not be compiled with ERASan.

are not directly comparable. RustSan reduces the instrumenta-
tion overhead to 19.86%, performing better than SafeFFI with
53.04%. We see two explanations for this behavior. First, the
cast checks inserted by SafeFFI can be more expensive than
the elided checks as explained above. Second, RustSan not
only elides checks but in its implementation we discovered
that it also suppresses instrumentation for the whole function
if none of the pointers within the function aliases with a raw
pointer. This optimization leads, e.g., to omitting redzone
poisoning which accounts for a significant portion of ASan’s
overhead. Hence, theoretically, RustSan could be even faster
than the ASan base overhead. This optimization is only possi-
ble because of the whole-program analysis of RustSan, which
comes at the cost of impractical compile-time overheads.

ARM and HWASan. We also evaluate run-time overhead
on the AARCH64 architecture. We ran benchmarks on a
Mac Studio M2 Ultra with 24 ARMv8 cores and 192 GB
RAM running an Ubuntu 20.04 docker container on ASAHI
Linux 6.12.0. Figure 7 shows the results. The color-coding for
SafeFFI on top of ASan is the same as in Figure 6. In Figure 7
we also include SafeFFI on top of HWASan and HWASan
in blue color shades. We observe that on ARM SafeFFI re-
duces the overhead of ASan from 3.40× to 3.16× on average
(medians: 3.35× to 3.24×). Comparing the vanilla sanitiz-
ers and their base overheads, we see that ASan benefits less
from check elision than HWASan because ASan’s base over-
head is not dominated by load and store checks but mostly by
metadata maintanence, especially redzone (un-)poisoning. In
HWASan, load and store checks have greater impact on the
run time. Thus, applying SafeFFI on top of HWASan signifi-
cantly reduces its overhead from 3.18× to 2.29× on average
(medians: 3.06× to 2.20×). Because RustSan’s run-time over-

head reduction is heavily influenced by their optimization of
redzones, we conjecture that applying their approach on top
of HWASan would not be as performant as SafeFFI.

7.4 Robustness in MLA Scenarios

Our experiments on correctness (§7.2) and effectiveness
(§7.3) contain real-world MLAs in the benchmark sets, e.g.,
bat depending on libgit2, rusqlite (CVE-2021-45713) on lib-
sqlite3, or xcb (RUSTSEC-2020-0097) on libxcb. Since we
did not encounter FFI-related compilation issues nor false
positives/negatives during execution, this is evidence that
SafeFFI works as designed in MLA scenarios. To be confi-
dent in the robustness of SafeFFI, we created a systematic set
of minimal test cases that covers all common FFI interactions
between C and Rust that we could conceive of. It covers the
following dimensions:

1. Allocation: Global, C stack/heap, Rust stack/heap;
2. Deallocation: Global, C stack/heap, Rust stack/heap;
3. Pointer invalidation: pointer arithmetic, deallocation, in-

valid pointer crafting, or no invalidation (benign test);
4. Control flow permutation: interleaving of pointer casts,

invalidations, and dereferences;
We evaluated SafeFFI on all meaningful combinations of
these dimensions leading to 45 distinct test cases (35 with
vulnerabilities, 10 without). All tests are included in the ar-
tifact. SafeFFI is robust against all of those cases, meaning
that it does not raise any false positives or false negatives.

7.5 Compile-Time Performance

Figure 8 shows the compile-time overhead of ASan, SafeFFI,
ERASan and RustSan, answering RQ5. Note that overheads

14

are computed respective to the toolchain of each tool. All
overheads are compared to baseline runs in a default build
process with multiple compilation units. Since RustSan and
ERASan both require a single compilation unit, we also mea-
sured the overhead incurred by their modified build process
which consistently lies between 2.28× and 2.39× for smaller
crates. For larger crates the overhead of single compilation
units is up to 5.30×. SafeFFI is designed to work with the de-
fault multi-compilation-unit build process and does not incur
this overhead.

For the SafeFFI toolchain, ASan induces a compile-time
overhead of 1.38× on average (median: 1.34×) which
SafeFFI increases to a reasonable 2.01× on average. The
maximum compilation overhead is 3.25× on ripgrep. We
see that the our call graph analysis (cf. §6.4) for inserting
Free-During-Scope heap checks only adds a moderate over-
head compared to SafeFFI without Free-During-Scope checks
which lies at 1.49× on average, in a similar range as vanilla
ASan. RustSan adds a compile-time overhead of avg. 5.91×
(median: 4.87×), with outliers reaching an overhead of up
to 53.21×, because it performs a whole-program points-to
analysis to identify safe pointers that alias raw pointers, based
on SVF [44]. ERASan’s approach shares the high-level idea
and the dependency on SVF with RustSan and therefore also
incurs high compile-time overhead. However, with 73.05×
on average (median: 51.69×) and outliers up to 701.83×,
ERASan shows worse compile-time overheads which might
be an effect of the implementation of their analysis. Regarding
memory consumption during compilation, SafeFFI requires
on average 1.04× (max. 1.07×) while RustSan and ERASan
require an average of 5.92× (max. 54.91×) and 12.70× (max.
153.37×), respectively.

To conclude, SafeFFI outperforms the state of the art by
a large margin and thus enables adoption of the proposed
techniques even for larger software projects.

8 Related Work

Run-time Check Reduction for Rust. Rust for
Morello [12] executes Rust programs on the CHERI
architecture [48] for hardware-enforced memory safety (not
commercially available). They elide software bounds checks
emitted by the Rust compiler, but find little benefit due to
compiler optimizations.

RustSan [5] and ERASan [30] are two recent approaches
that, akin to SafeFFI, aim to reduce the overhead of ASan in
Rust-only programs by eliding checks for pointers already
proven to be safe by the Rust compiler. The approach of both
tools is similar: 1⃝ annotate raw pointer types during lowering
to LLVM IR, 2⃝ perform a whole-program points-to analysis
using SVF [44] to identify pointers that alias with raw point-
ers and 3⃝ only retain ASan checks for pointers that may alias
raw pointers. Both tools perform optimistic static analysis
and decide elision based on whether a points-to set contains

a raw pointer, i.e., missing raw pointer type annotations or
imprecisions in the alias analysis may lead to vulnerabilities
going undetected (false negatives). Consequently, both tools
require the entire LLVM IR of a program in a single com-
pilation unit to uphold the security guarantees of ASan. In
practice, this means that the LLVM IR of all dependencies,
need to be merged together with the application code into
a large monolithic compilation unit, analyzed, instrumented,
optimized, assembled and linked for every compilation run. In
particular, this requires the build process to always rebuild and
include Rust’s standard library into the analysis to soundly
compute points-to sets which leads to significant compilation
overhead, as shown in §7.5.

In contrast, SafeFFI is able to elide checks with efficient
local reasoning and a compositional analysis for Free-During-
Scope checks. Consequently, SafeFFI seamlessly integrates
into the standard multi-compilation-unit build process and
only introduces moderate compile-time overhead, enabling
adoption even for large projects. We designed SafeFFI to be
conservative, i.e., in case the type of a pointer is unknown to
our analysis, SafeFFI treats it as raw and retains the sanitizer
checks, enabling SafeFFI to be used for MLAs. Our concept
of hoisting checks to locations of casts and other safe pointer
creations also leads to superior debuggability because SafeFFI
fails earlier and points developers directly to a violation of
the Rust’s requirements for safe pointers at the boundary to
unsafe or foreign code.

General Sanitizer Optimizations. Prior work on C/C++
includes ASAP [47] which removes checks on hot paths, trad-
ing security for performance. Moll et al. [33], hoist bounds
checks in loops. ASan-- [50] uses lightweight static analysis
and SanRazor [49] a combination of static and dynamic anal-
ysis to reduce redundant checks. These are complementary
to SafeFFI and could be applied to raw pointers in Rust or
C/C++ parts of MLAs.

Run-time Isolation for Rust. Several proposed approaches
isolate safe Rust from unsafe code, e.g., Sandcrust [21], Fi-
delius Charm [1], XRust [26], relying on developer annota-
tions or hardware/OS support for process isolation. TRust [3],
PRKUSafe [18] and Gülmez et al. [11] instead use Intel’s
Memory Protection Keys (MPK) to separate safe and unsafe
objects in different memory regions. Galeed [39] and Om-
niglot [40] explicitly address cross-language attacks [28] by
isolating Rust from C code, relying on hardware features for
in-process isolation. As opposed to those isolation approaches
that only inhibit the spread of memory vulnerabilities from
unsafe code to safe Rust code, SafeFFI prevents memory
vulnerabilities in the first place and therefore enables better
debugging, without requiring source or OS changes.

15

Static and Dynamic Analyzers for Memory Safety in Rust.
Tools like MIRChecker [24], Rudra [2], Yuga [36], and Safe-
Drop [6] use static analysis to detect memory bugs in Rust,
while FFIChecker [23] and CRust [15] focus on FFI safety.
These approaches suffer from false positives and excessive
compile-time overhead, whereas SafeFFI is a dynamic analy-
sis based on sanitizers resulting in high precision at the cost of
run-time overheads which SafeFFI significantly reduces for
Rust code. Miri [17] is also a dynamic analysis tool which per-
forms an interpreter-based execution of Rust programs check-
ing for undefined behavior. It implements precise tracking
of pointer provenance which provides more precise memory
safety than HWASan. However, it is not feasible to use Miri
for MLAs since it only interprets Rust’s MIR. MiriLLI [27]
approaches this limitation by bridging Miri’s interpreter with
lli, an interpreter for LLVM IR. Since interpreters are orders
of magnitude slower than native execution, Miri and MiriLLI
incur a run-time overhead within three orders of magnitude
higher than (HW)ASan and SafeFFI.

9 Conclusion

We presented SafeFFI, a novel approach to hoist sanitizer
checks in Rust programs and MLAs to reduce the run-time
overhead of sanitizers and detect memory safety violations at
the boundary between safe and unsafe code. Compared to ex-
isting approaches, SafeFFI only uses function-local reasoning
to hoist checks instead of depending on whole-program static
points-to analysis, which can be expensive and error-prone.

Our approach for hoisting checks to locations of casts from
raw pointers to safe pointers shows improved performance.
We showed practicality and effectiveness in reducing the to-
tal number of sanitizer checks for popular Rust libraries by
72.02 %− 79.63%, resulting in a reduction of the average
run-time overhead for ASan from 2.71× to 2.44× and for
HWASan from 3.18× to 2.29×. On our data set with exist-
ing real-world vulnerabilities, we were able to demonstrate
that SafeFFI detects the same violations as the underlying
sanitizer and even improves debuggability by failing closer
to the root cause of memory safety violations in the interac-
tion between safe Rust and unsafe Rust or foreign code. We
showed that SafeFFI can be implemented in a modular way,
such that it may in the future be adapted to further memory
sanitizers, including those with stronger guarantees, such as
SoftboundCETS [34, 35].

Acknowledgments

We would like to thank our shepherd and the reviewers for
their constructive feedback that was essential in finalizing
the paper. This project was partly funded by the Deutsche
Forschungsgemeinschaft (DFG) – 378803395 (ConVeY).

Ethical Considerations

SafeFFI, as all base memory sanitizers, is generally designed
as a defensive tool for software hardening and bug finding, but
may be considered dual use. We have identified the following
stakeholders for whom code instrumentation can lead to ben-
efits or harm: (a) software developers benefit from detecting
vulnerabilities early during development, being able to fix
them to reduce risk (and costs); (b) attackers can instrument
open-source software with sanitizers to detect vulnerabilities,
which might guide them towards successfully exploiting vul-
nerable code; (c) users benefit from improved security when
vulnerabilities are discovered and fixed during development.
If software is deployed in production with sanitizers in en-
abled, exploitation is made considerably more challenging;
yet, a potential risk is that benign executions could be termi-
nated by the sanitizer, although the observed memory error
would not have had negative effects. Overall we believe that
the risks are clearly outweighed by the benefits.

All vulnerabilities used for evaluation in this work (see
Table 1) were already publicly known, and we did not try to
discover new vulnerabilities.

Open Science

We comply with the open science policy by releasing the
SafeFFI prototype as open source and for artifact evaluation.
This includes our modifications to rustc and LLVM, test sets,
benchmarks and the corresponding scripts to build and exe-
cute them with SafeFFI, as well as our raw evaluation data.
The artifact can be downloaded on Zenodo:
https://doi.org/10.5281/zenodo.17976648

The project repositories are hosted on Github and will be
made public here: https://github.com/SafeFFI/

References

[1] Hussain MJ Almohri and David Evans. Fidelius Charm:
Isolating Unsafe Rust Code. In Proc. 8th ACM Con-
ference on Data and Application Security and Privacy
(CODASPY), pages 248–255. ACM.

[2] Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon
Lim, and Taesoo Kim. Rudra: Finding Memory Safety
Bugs in Rust at the Ecosystem Scale. In Proc. ACM
SIGOPS 28th Symp. on Operating Systems Principles
(SOSP), pages 84–99. ACM.

[3] Inyoung Bang, Martin Kayondo, HyunGon Moon, and
Yunheung Paek. TRust: A compilation framework for
in-process isolation to protect safe rust against untrusted
code. In 32nd USENIX Security Symposium, pages 6947–
6964. USENIX Association, 2023.

16

https://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.5281/zenodo.17976648
https://github.com/SafeFFI/

[4] Xingman Chen, Yinghao Shi, Zheyu Jiang, Yuan Li,
Ruoyu Wang, Haixin Duan, Haoyu Wang, and Chao
Zhang. MTSan: A feasible and practical memory sani-
tizer for fuzzing COTS binaries. In Proc. 32nd USENIX
Security Symposium. USENIX Association, 2023.

[5] Kyuwon Cho, Jongyoon Kim, Kha Dinh Duy, Hajeong
Lim, and Hojoon Lee. RustSan: Retrofitting Ad-
dressSanitizer for efficient sanitization of rust. In
33rd USENIX Security Symposium, pages 3729–3746.
USENIX Association, 2024.

[6] Mohan Cui, Chengjun Chen, Hui Xu, and Yangfan
Zhou. SafeDrop: Detecting memory deallocation bugs
of rust programs via static data-flow analysis. ACM
Transactions on Software Engineering and Methodol-
ogy (TOSEM), 32(4):1–21, 2023.

[7] The Rust Project Developers. Primitive Type Ref-
erence - Safety. Section of "The Rust Standard Li-
brary" documentation. https://doc.rust-lang.org/
std/primitive.reference.html#safety.

[8] The Rust Project Developers. Type Coercions. Section
of "The Rust Reference". https://doc.rust-lang.
org/reference/type-coercions.html.

[9] Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben
Hardekopf. Translating C to safer Rust. Proc. ACM
Program. Lang. (OOPSLA), October 2021.

[10] Hasan Ferit Eniser, Hanliang Zhang, Cristina David,
Meng Wang, Maria Christakis, Brandon Paulsen, Joey
Dodds, and Daniel Kroening. Towards translating real-
world code with LLMs: A study of translating to Rust,
2025.

[11] Merve Gülmez, Thomas Nyman, Christoph Baumann,
and Jan Tobias Mühlberg. Friend or foe inside? explor-
ing in-process isolation to maintain memory safety for
unsafe rust. In 2023 IEEE Secure Development Confer-
ence (SecDev), pages 54–66. IEEE, 2023.

[12] Sarah Harris, Simon Cooksey, Michael Vollmer, and
Mark Batty. Rust for Morello: Always-On Memory
Safety, Even in Unsafe Code (Artifact). Dagstuhl Arti-
facts Series, 9(2):25:1–25:2, 2023.

[13] Ben Hawkes. 0day “in the wild”, 2019. https://
googleprojectzero.blogspot.com/p/0day.html.

[14] Konrad Hohentanner, Philipp Zieris, and Julian Horsch.
Cryptsan: Leveraging arm pointer authentication for
memory safety in c/c++. In Proc. 38th ACM/SI-
GAPP Symposium on Applied Computing (SAC), page
1530–1539. ACM, 2023.

[15] Shuang Hu, Baojian Hua, Lei Xia, and Yang Wang.
CRUST: towards a unified cross-language program anal-
ysis framework for Rust. In 22nd IEEE Int. Conf. Soft-
ware Quality, Reliability and Security (QRS), pages 970–
981. IEEE, 2022.

[16] Intel Corp. Pointer checker, 2021. https:
//www.intel.com/content/www/us/en/docs/
cpp-compiler/developer-guide-reference/
2021-10/pointer-checker.html.

[17] Ralf Jung, Benjamin Kimock, Christian Poveda, Ed-
uardo Sánchez Muñoz, Oli Scherer, and Qian Wang.
Miri: Practical undefined behavior detection for rust. In
53rd ACM SIGPLAN Symp. on Principles of Program-
ming Languages (POPL). ACM, 2026.

[18] Paul Kirth, Mitchel Dickerson, Stephen Crane, Per
Larsen, Adrian Dabrowski, David Gens, Yeoul Na, Stijn
Volckaert, and Michael Franz. PKRU-safe: Automati-
cally locking down the heap between safe and unsafe
languages. In Proc. 17th European Conference on Com-
puter Systems (EuroSys), pages 132–148. ACM.

[19] Steve Klabnik, Carol Nichols, and Chris Krycho. Un-
derstanding Ownership. Chapter 4 of "The Rust Pro-
gramming Language". https://doc.rust-lang.org/
book/ch04-00-understanding-ownership.html.

[20] Taddeus Kroes, Koen Koning, Erik van der Kouwe, Her-
bert Bos, and Cristiano Giuffrida. Delta pointers: buffer
overflow checks without the checks. In Proc. 13th
European Conference on Computer Systems (EuroSys).
ACM, 2018.

[21] Benjamin Lamowski, Carsten Weinhold, Adam Lack-
orzynski, and Hermann Härtig. Sandcrust: Automatic
sandboxing of unsafe components in Rust. In Proc. 9th
Workshop on Programming Languages and Operating
Systems (PLOS), pages 51–57. ACM.

[22] Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Math-
ias Payer, Ying Liu, and Chao Zhang. PACMem: En-
forcing spatial and temporal memory safety via ARM
Pointer Authentication. In Proc. 2022 ACM SIGSAC
Conference on Computer and Communications Security
(CCS). ACM, 2022.

[23] Zhuohua Li, Jincheng Wang, Mingshen Sun, and John
C. S. Lui. Detecting Cross-language Memory Manage-
ment Issues in Rust. In Computer Security – ESORICS
2022, Lecture Notes in Computer Science, pages 680–
700. Springer Nature Switzerland.

[24] Zhuohua Li, Jincheng Wang, Mingshen Sun, and
John C.S. Lui. MirChecker: Detecting bugs in rust
programs via static analysis. In Proc. ACM SIGSAC

17

https://doc.rust-lang.org/std/primitive.reference.html#safety
https://doc.rust-lang.org/std/primitive.reference.html#safety
https://doc.rust-lang.org/reference/type-coercions.html
https://doc.rust-lang.org/reference/type-coercions.html
https://googleprojectzero.blogspot.com/p/0day.html
https://googleprojectzero.blogspot.com/p/0day.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/pointer-checker.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/pointer-checker.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/pointer-checker.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/pointer-checker.html
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html

Conference on Computer and Communications Security
(CCS), page 2183–2196. ACM, 2021.

[25] Zhenpeng Lin, Zheng Yu, Ziyi Guo, Simone Campanoni,
Peter Dinda, and Xinyu Xing. CAMP: Compiler and
allocator-based heap memory protection. In Proc. 33rd
USENIX Security Symposium. USENIX Association,
2024.

[26] Peiming Liu, Gang Zhao, and Jeff Huang. Securing
unsafe Rust programs with XRust. In Proc. ACM/IEEE
42nd Int. Conf on Software Engineering (ICSE), pages
234–245. ACM.

[27] Ian McCormack, Joshua Sunshine, and Jonathan
Aldrich. A Study of Undefined Behavior Across For-
eign Function Boundaries in Rust Libraries . In 47th
Int. Conf. on Software Engineering (ICSE), pages 2075–
2086. IEEE, May 2025.

[28] Samuel Mergendahl, Nathan Burow, and Hamed
Okhravi. Cross-Language Attacks. In Proc. 2022
Network and Distributed System Security Symposium
(NDSS). Internet Society.

[29] Matt Miller. Trends, challenges, and strategic shifts
in the software vulnerability mitigation landscape. In
BlueHat IL. Microsoft Security Response Center, 2019.

[30] Jiun Min, Dongyeon Yu, Seongyun Jeong, Dokyung
Song, and Yuseok Jeon. ERASan: Efficient Rust Ad-
dress Sanitizer. In 2024 IEEE Symp. on Security and
Privacy (S&P), pages 4053–4068. IEEE.

[31] MITRE Corp. 2024 CWE Top 10 KEV Weaknesses,
2024. https://cwe.mitre.org/top25/archive/
2024/2024_kev_list.html.

[32] MITRE Corp. 2024 CWE top 25 most dangerous soft-
ware weaknesses, 2024. https://cwe.mitre.org/
top25/archive/2024/2024_cwe_top25.html.

[33] Simon Moll, Henrique Nazaré, Gustavo Vieira Machado,
and Raphael Ernani Rodrigues. Bounds Check Hoist-
ing for AddressSanitizer. In Programming Languages,
pages 47–61. Springer International Publishing.

[34] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin,
and Steve Zdancewic. Softbound: Highly compatible
and complete spatial memory safety for C. In Proc.
ACM SIGPLAN Conference on Programming Language
Desing and Implementation (PLDI). ACM, 2009.

[35] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin,
and Steve Zdancewic. CETS: Compiler enforced tempo-
ral safety for C. In Proc. 2010 International Symposium
on Memory Management (ISMM). ACM, 2010.

[36] Vikram Nitin, Anne Mulhern, Sanjay Arora, and
Baishakhi Ray. Yuga: Automatically detecting lifetime
annotation bugs in the Rust language. IEEE Trans. Softw.
Eng. (TSE), 50(10):2602–2613, October 2024.

[37] Benjamin Orthen, Oliver Braunsdorf, Philipp Zieris, and
Julian Horsch. SoftBound+CETS revisited: More than
a decade later. In Proc. 17th European Workshop on
Systems Security (EuroSec). ACM, 2024.

[38] Michalis Papaevripides and Elias Athanasopoulos. Ex-
ploiting mixed binaries. ACM Trans. Priv. Secur.
(TOPS), 24(2), January 2021.

[39] Elijah Rivera, Samuel Mergendahl, Howard Shrobe,
Hamed Okhravi, and Nathan Burow. Keeping Safe Rust
Safe with Galeed. In Proc. Computer Security Applica-
tions Conference (ACSAC), pages 824–836. ACM.

[40] Leon Schuermann, Jack Toubes, Tyler Potyondy, Pat
Pannuto, Mae Milano, and Amit Levy. Building bridges:
Safe interactions with foreign languages through Om-
niglot. In Proc. 19th Symp. Operating Systems Design
and Implementation (OSDI), pages 595–613. USENIX
Association, 2025.

[41] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov. AddressSanitizer: A
fast address sanity checker. In Proc. 2012 USENIX
Annual Technical Conference (ATC). USENIX Associa-
tion, 2012.

[42] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyap-
nikov, Vlad Tsyrklevich, and Dmitry Vyukov. Memory
tagging and how it improves C/C++ memory safety.
arxiv:1802.09517, Google LLC, 2018.

[43] Dokyung Song, Julian Lettner, Prabhu Rajasekaran,
Yeoul Na, Stijn Volckaert, Per Larsen, and Michael
Franz. SoK: Sanitizing for security. In Proc. 2019
IEEE Symposium on Security and Privacy (S&P). IEEE,
2019.

[44] Yulei Sui and Jingling Xue. SVF: interprocedural static
value-flow analysis in LLVM. In Proc. 25th Int. Conf.
Compiler Construction (CC), pages 265–266. ACM,
2016.

[45] The Chromium Developers. Memory safety. https:
//www.chromium.org/Home/chromium-security/
memory-safety/.

[46] Emanuel Vintila, Philipp Zieris, and Julian Horsch. Eval-
uating the Effectiveness of Memory Safety Sanitizers. In
Proc. 2025 IEEE Symp. on Security and Privacy (S&P),
pages 88–88. IEEE, May 2025.

18

https://cwe.mitre.org/top25/archive/2024/2024_kev_list.html
https://cwe.mitre.org/top25/archive/2024/2024_kev_list.html
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/

[47] Jonas Wagner, Volodymyr Kuznetsov, George Candea,
and Johannes Kinder. High System-Code Security with
Low Overhead. In 2015 IEEE Symp. on Security and
Privacy (S&P), pages 866–879. IEEE.

[48] Robert N.M. Watson, Jonathan Woodruff, Peter G. Neu-
mann, Simon W. Moore, Jonathan Anderson, David
Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka, Ben
Laurie, Steven J. Murdoch, Robert Norton, Michael Roe,
Stacey Son, and Munraj Vadera. CHERI: A Hybrid
Capability-System Architecture for Scalable Software
Compartmentalization. In 2015 IEEE Symp. on Security
and Privacy (S&P), pages 20–37. IEEE.

[49] Jiang Zhang, Shuai Wang, Manuel Rigger, Pinjia He,
and Zhendong Su. SANRAZOR: Reducing redundant
sanitizer checks in C/C++ programs. In Proc. 15th
USENIX Symp. on Operating Systems Design and Im-
plementation (OSDI), pages 479–494. USENIX Associ-
ation, 2021.

[50] Yuchen Zhang, Chengbin Pang, Georgios Portokalidis,
Nikos Triandopoulos, and Jun Xu. Debloating address
sanitizer. In 31st USENIX Security Symposium, pages
4345–4363. USENIX Association, August 2022.

[51] Tianyang Zhou, Haowen Lin, Somesh Jha, Mihai
Christodorescu, Kirill Levchenko, and Varun Chan-
drasekaran. LLM-driven multi-step translation from
C to rust using static analysis. CoRR, abs/2503.12511,
2025.

19

	Introduction
	Background
	Memory Safety and C/C++
	Memory Safety and Rust

	Threat Model
	SafeFFI Overview
	Type-System-Guided Sanitizer Checks
	Memory Safety Enforcement Boundaries
	Local Type Analysis for Check Hoisting
	Catching Free-During-Scope Violations
	Interprocedural Memory Safety

	SafeFFI's Implementation
	Pointer Type Annotation in MIR
	Pointer Type Analysis on LLVM IR
	Pointer Cast Detection in MIR
	Callgraph-Based Deallocation Checking

	Evaluation
	Methodology
	Correctness
	Effectiveness
	Robustness in MLA Scenarios
	Compile-Time Performance

	Related Work
	Conclusion

